

PÁGINA ABERTA: Mais um prémio patrocinado pela Landry e Seikosha SOFTWARE: MAIS JOGOS!


- DOSSIER VIDEO 8 mm : ARTIGO, ENSAIOS CAMCORDER E GRAVADOR SONY - COMPACT-DISC AKAI


sumário
orsodores Permanemtes
Grapa Alonso
Grace Alonso
Amsto Abit

Pouto Ponvira
Antóno Ajpos
Coordenacio do Suplemento de Video
Pauto Jorge Cruz
Fiolscies Pubticess E Comercinis
Joio Podio Soares
5ao Padro Soarres
Servicas Adminditrativos o Aselnoturats
Producb
Socedia, Sociedadido Eutionial, Lda
Coordonafio Cratica
Franco Gonies
Impresaio
Prapopo
Diroccio, Aedisccio, Publicidede oA Asinnuturas
A. Alriodo Aoqui Gamero N* 21-1" Esq

Tats 767326 - 767339
Distritulicto (Meclonal Shmultinoa)
Electroibor Lda
Periodkidede
Monsal
Proco de Cape
100500
12000 Exemplaro


Depósito Legal $n$ a $8707 / 85$
PORTE
PAGO

## editorial

ENSINO ..... 2
CURIOSIDADES (Kasparov) ..... 4
REPORTAGEM ..... 6
SOFTWARE

- Jardineiro ..... 9
- Poing ..... 10
BOLSA MICROSOFT ..... 12
MINI CURSO ..... 14
PÁGINA ABERTA ..... 16
ANÁLISE ..... 24
Microclubes ..... 26
Livros ..... 32
SUPLEMENTO VIDEO/AUDIO ..... 33


## O computador é mais simpático

Arápida evolução da sociedade em que vivemos veio criar a necessidade de reavaliar o sistema educativo. Os progressos tecnológicos que acompanharam essa evolução fornecem, por sua vez, meios inéditos para a resolução dos problemas emergentes. Ó ensino assistido por computador, uma inovação possível entre outras, veio facilitar uma aprendizagem pela descoberta activa da realidade, orientada para o desenvolvimento das capacidades intelectuais. Por outro lado, veio auxiliar o aluno nos processos de aquisição e reforço dos conhecimentos, per-
mitindo-Ihe realizar simulaçōes, consultar bases de dados e recorrer a programas pedagógicos já elaborados.
É a este tema que Mini Micro's volta nesta edição do final de 1985 - precisamente porque entendemos que os micros nāo se esgotam nos jogos e nas «brincadeiras" mais ou menos bem conseguidas que vão povoando o imaginário colectivo dos apreciadores de uma das mais recentes e apaixonantes tecnologias.

E preciso dar uma razão útil aos micros - e aos micros que muitos de nós têm em casa - , para além de os usarmos como simples
alternativa aos nossos afazeres ou paixoneta lúdica passageira. Vamos começar a ver neste número o que os micros podem fazer para tornar menos fatigante e mais proveitoso o ensino de muitas das matérias que continuam a ser hoje um quebra-cabeças para muita gente. Da utilização do computador no ensino dizzia, nāo há muito tempo, um jornal francés, reproduzindo o que the dissera uma criança de nove anos que acabava de ter a sua primeira experiência com o posto de trabalho de um sistema de EAC: «É como nas aulas, com a diferença de que o computador é mais simpático!»


# O ENSINO ASSISTIDO POR COMPUTADOR 

## «Quando falho, não me grita!»

Atentativa de acompanhar o desenvolvimento da sociedade actual seguindo os métodos tradicionais de ensino tem-se reflectido numa sobrecarga crescente dos curriculos existentes, conduzindo à aquisição e retenção de enormes quantidades de informação e à perda de ligação entre os conhecimentos ministrados nas diversas disciplinas. Numa sociedade em rápida evolução é cada vez mais necessário compreender novas situaçōes, saber reagir ao imprevisto e ganhar a aptidāo para inovar. Em vez de meramente obrigar o aluno a absorver e a reter conhecimentos, a educação deve ser orientada para o desenvolvimento do pensamento inventivo e da capacidade de aplicar de forma criativa a informação disponivel.

Um dos meios que se tem vindo a tentar utilizar, desde há cerca de duas décadas, para orientar a educação neste sentido é o Ensino Assistido por Computador (EAC). Nesta forma de ensino sāo exploradas as potencialidades do computador para facilitar a aprendizagem e conduzir a um tipo de preparação mais adequado às novas exigências do ensino.

Numa fase primitiva, caracterizada pelo elevado preço dos computadores e por limitadas facilidades no capítulo da programação, as experiências foram pouco animadoras. Por um lado, surgiram tendências para substituir totalmente o ensino tradicional pelo ensino assistido pelo computador, o que, aliado à rigidez dos módulos de ensino disponiveis na altura, conduziu a experiências desastrosas; por outro lado, a falta de experiência no domínio pedagógico relativamente à introdução de formas de aprendizagem diferentes levou à construção de módulos de ensino em que o computador imitava simplesmente o professor, desperdiçando-se assim as reais
potencialidades do novo meio de ensino como auxiliar, e não como substituto, do professor. A evolução da tecnologia, especialmente no que se refere ao desenvolvimento de sistemas de microcomputadores com uma relação qualidade/preço muito favorável e a disponibilidade de metodologias e de linguagens de programação mais evoluídas, veio abrir novas perspectivas neste domínio.

## O DIÁLOGO <br> COM A «MÁQUINA AMIGÁVEL"

A utilização de meios informáticos no ensino traz uma situação pedagógica nova, de interaçção entre máquina e aluno. O diálogo com uma máquina amigável, de paciência infinita e com capacidade de resposta imediata, pode produzir efeitos muito benéficos. Um jornal francês (ALI80) descrevia há algum tempo nos seguintes termos a opiniāo de Tomás, uma criança de nove anos que acabava de ter a sua primeira experiência com o posto de trabalho de um sistema de EAC: "É como nas aulas, com a diferença de que o computador é mais simpático. Deixa-me recomeçar, e diz: 'Tenta outra vez'. E quando falho, não me grita, explica o problema de outro modo, várias vezes, e quando consigo, diz-me: 'Tomás, tu és formidável'. Fazemos o que queremos. É bestial!,

## O PODER DA REPRESENTAÇĀO

É sobejamente reconhecido o poder da representação gráfica da informação. Sāo inúmeros os casos em que a figura se torna o único meio de ilustrar situaçōes. A possibilidade de gerar figuras e modificá-las, por meio de comandos simples, é um dos méritos do ensino assistido por computador. De todas as técni-
cas gráficas a mais poderosa, a da Animação, que permite ilustrar conceitos por representação dinâmica de processos, é facilmente realizável com computadores.

A simplicidade no manuseamento de gráficos, o reforço da interacção compu-tador-aluno e a provisão de características que facilitam aos professores a adaptação e construção de programas de indole pedagógica, tem-se tornado um dos objectivos centrais das linguagens de programaçāo que começaram a ser conhecidas especificamente para o ensino. Com base nestas linguagens e nos equipamentos de preço reduzido que a microelectrónica passou a facultar, a generalidade dos paises mais industrializados tem vindo a desenvolver e a estimular, em ritmo crescente, a introduçāo das tecnologias da informaçảa como instrumentos auxiliares de ensino.


## ALGUMAS FORMAS DE ENSINO ASSISTIDO

As tecnologias da informação como instrumentos auxiliares no ensino secundário têm sido objecto de estudos, debates e conferências em toda a parte do mundo e também em Portugal. Neste domínio é de realçar o empenhamento de um grupo de professores do Departamento de Engenharia Electrotécnica, da Universidade de Coimbra, que ao assunto têm dedicado trabalhos aprofundados e estudos de incontestável merecimento.

E com base num desses trabalhos, apresentado por Teresa Mendes e Dias de Figueiredo, numas Jornadas de Engenharia realizadas nāo há muito tempo, que Mini Micro's resolve voltar a esta temática por nos parecer que a sua abordagem constitui pólo complementar precioso na presente e futura visāo do computador. E também porque, muito em breve, o programa MINERVA - um projecto da autoria daquele grupo de informática, já aprovado superiormente - irá arrancar, certamente com as indecisōes naturais em quem começa, e, porventura, com as desconfianças que ainda pode gerar a entrada do computador nas escolas.

Mas voltemos ao tema desse trabalho para referimos que a introduçāo de meios informáticos no ensino se iniciou com o ensino programado. Neste tipo de ensino a aquisiçāo de conhecimentos é feita apresentando a informação por meio de um conjunto de perguntas-respostas que foram pré-determinadas com base nas respostas esperadas.

Estas perguntas-respostas podem constituir apenas uma sequência linear de etapas que é seguida no caso de respostas correctas e que é retomada no caso de respostas falsas, ou podem ainda organizar-se sob a forma de uma rede ramificada a vários niveis de dificuldade. Neste tipo de ensino, apesar da informação apresentada ao aluno ser a mesma que pode estar contida num livro de texto, o computador vai permitir diversificar as alternativas, possibilitando assim que alunos com ritmo de progressão distintos evoluam segundo vias diferentes.

Houve ao longo da década de sessenta várias tentativas falhadas de introduzir o ensino programado nas escolas. Actualmente, e após uma longa fase de experiência e de reflexāo, considera-se que apenas se justifica em situaçōes muito especiais. Um caso tipico é o dos programas de formação técnica em que se pretende essencialmente transmitir informação de forma adaptada a cada individuo.

## EXERCICIOS REPETITIVOS

Outra forma de ensino assistido por computador é a apresentação de EXERCICIOS REPETITIVOS cujo objectivo é oferecer a prática dos mecanismos de manipulação de conceitos. O computador propóe problemas aos quais o aluno procura dar resposta. Se a resposta for certa, o computador apresenta outro problema de maior dificuldade; se for errada, o computador sugere problemas mais fáceis, e poderá, eventualmente, aconselhar o auxilio do professor. Os exercicios repetitivos permitem individualizar o ensino, e têm eñcontrado particular sucesso fora da sala de aula, como forma de orientar e estimular o aluno no seu trabalho de consolidação dos conceitos teóricos.

Para tentar ultrapassar a rigidez dos dois métodos anteriores, que apenas determinam se a resposta final é certa ou errada, utiliza-se o MODO DIÁLOGO, que é caracterizado por um elevado grau de interaç̧ão aluno-máquina, na forma de uma "conversaçāo". O aluno pode também fazer perguntas, o que favorece as actividades de pesquisa e participação. Toda a pergunta ou resposta do aluno leva o sistema a uma de diversas reacçōes: aconselhar outra via de resoluçāo, guiar o aluno no sentido de uma revisão de conceitos base, fazê-lo descobrir as contradiçōes do seu raciocínio. Este método exige grande esforço de preparação do material de ensino e levanta alguns problemas ao nivel da linguagem a usar no diálogo. Em contrapartida, uma vez que o ensino é conduzido por meio de tentativas sucessivas, nāo é só urna forma de aquisiçāo de conhecimentos mas também um factor importante no desenvolvimento das capacidades intelectuais dos alunos.

## SIMULAÇĀO

Também com o objectivo de proporcionar ao aluno a aquisição de métodos de raciocínio e de dedução sāo usados programas de SIMULAÇĀO. Uma das formas de utilizaçāo desses programas consiste em efectuar experiências de simulação sobre um modelo implementado previamente no computador. As experiências poderāo visar a descoberta de valores de parâmetros ou relaçōes entre parâmetros, ou o estudo dos resultados provocados num ambiente simulado por introdução, pelo aluno, de determinados valores de variáveis. A níveis mais elevados é também útil que o aluno aprenda a desenvolver modelos de situaçōes e a testar a sua validade.

Apesar de ser um método que exige bastante tempo de computação, é um dos mais eficazes para desenvolver a intuiçāo e aumentar a sensibilidade prática às situaçōes simuladas. Como permite representar fenómenos de uma forma muito mais rápida do que a sua ocorrência real e produzir grandes quantidades de dados, possibilita também a experiência com situações difíceis ou impossiveis de obter na realidade.

Outra tendência que tem vindo a ser seguida com algum sucesso é a da CONSTRUÇĀO DE PROGRAMAS DE COMPUTAD́OR como meio de desenvolver a capacidade de formulação e resoluçāo de problemas. Construir um programa de computador envolve nāo só o conhecimento do problema como também do método de o resolver. Para esse efeito sāo utilizadas linguagens simples de aprender e utilizar, e especialmente concebidas para auxiliar a resoluçāo de problemas.

## OS JOGOS EDUCATIVOS

A utilização de JOGOS EDUCATIVOS pode também ser considerada como um método para o desenvolvimento de aptidōes intelectuais. O poder motivador dos jogos é assim explorado para incentivar a prática das matérias aprendidas. Sāo indispensáveis no entanto, uma escolha criteriosa dos jogos e a precaução de evitar que os aspectos motivacionais obscureçam os objectivos do ensino.

O uso de PROGRAMAS DE APLICAÇĀO, adequado para auxiliar a resolução de problemas, faz diminuir o tempo tradicionalmente dedicado a cálculos laboriosos. Assim, permite devotar mais tempo à consideraçāo de aspectos de formulação e generalização do problema. Poderá ser desejável, em alguns casos, que ao utilizar o programa de aplicação o aluno conheça de antemão o método no qual o programa se baseia.


## KASPAROV



0novo campeāo mundial de xadrez, Garri Kasparov, vai comercializar. a partir do próximo ano o seu estilo e características de jogo, através de programas para computador, destinados ao mercado ocidental - foi agora revelado em Bona.
O perito alemāo-federal em computadores, Frederic Friedel, amigo pessoal de Kasparov, disse que o jovem campeão desloca-se em Dezembro a Hamburgo para analisar as possibilidades do negócio e contactar as primeiras firmas interessadas.

Kasparov pretende tambem criar o primeiro banco de dados de xadrez para os adeptos da modalidade em todo o mundo, arquivando milhares de partidas
de grande interesse em pouco mais de uma dúzia de discos para computador, de fácil comercialização e acessiveis a qualquer jogador, profissional ou nāo.

Para a consulta e estudo do arquivo de xadrez computorizado, o utilizador precisará apenas de uma pequena unidade doméstica, método mais cómodo e fácil do que a análise de partidas efectuada com base em livros especializados.

Numa segunda fase, Garry Kasparov pensa produzir cursos de xadrez para serem utilizados em computadores domésticos e està tambem disposto a produzir discos com comentários e análises das partidas que realize no âmbito de futuros campeonatos mundiais.

## JOGAR AOS 7 ANOS

Mas quem é Kasparov? Para os menos atentos às proezas do campeāo mundial de xadrez, diremos que foi o mais jovem "grande-mestre" a conseguir um titulo na longa história dos matchs mundiais, os quais começaram em 1986 com a vitória do checoslovaco Steiniz. Kasparov conseguiu o titulo este ano-recordemo-lo - , mercê da vitória obtida sobre o seu compatriota sovietico, Anatoli Karpov, que conquistara o primeiro titulo mundial em 1975. Num match de 24 partidas, Kasparov somou 13 pontos contra 11 de Karpov, que abandonou ao $42 .^{\circ}$ Iance a última partida.


Kasparov, apaixonado pelos computadores pessoais, assinou já um contrato com uma empresa japonesa fabricante de computadores, o qual permite à firma nipónica dar o nome do campeão mundial a um dos seus módulos, que pretende ser uma introdução ao seu estilo de jogo.

Garry Kasparov nasceu a 13 de Abril de 1963 na cidade de Baku - e aos sete anos começou a frequentar a secção de xadrez da sua cidade natal, tornan-do-se candidato a mestre três anos depois.

Ainda criança, Kasparov impressionava os peritos pelo seu relevante dom de combinação e pela capacidade de provocar verdadeiras "tempestades" no tabuleiro, o que provava o seu grande talento.

No desenvolvimento das capacidades do jovem Kasparov tiveram papel preponderante os antigos campeōes mundiais Aleksander Alekhine e Mikhail Botvinnik, cuja escola frequentou, durante cinco aos, entre 1973 e 1978.

Bicampeão nacional da URSS, em juvenis, Kasparov atingiu o título de mestre aos 15 anos. Um ano depois, participou no seu primeiro torneio internacional entre xadrezistas seniores em Banja--Luka e venceu, deixando para trás nomes conhecidos como os dos grandes--mestres Petrossian, Andersson e Esmeical.

Aos 17 anos, cumpriu a norma de grande-mestre internacional e foi campeão mundial de juvenis. Garry Kasparov foi campeāo da Uniāo Soviética em 1981, bicampeāo olímpico pela seleç̧ão da URSS e detentor do "Óscar de Xadrez" de 1982 a 1983.

Garry Kasparov, à data em que foi proclamado campeāo mundial, vivia em Baku, onde é aluno do quinto ano do Instituto de Linguas daquela cidade, mas foi em Moscovo, no final da última partida do mundial, vivida com emoção na Sala de Concertos Tchaikowski, que o novo campeāo viria a ser aclamado como campeão do mundo.
E já agora mais alguns pormenores para ajudar a entender a proeza extraordinária deste jovem de 22 anos: mais de cinco mil horas a pensar e 1863 lances, distribuídos por 414 dias, 227 dos quais em competiçāo, foram necessários para Garry Kasparov conseguir o título. A história de Kasparov inspirou um escritor português - Luís Santos -, que se debruçou sobre a vida e carreira do grande xadrezista mundial num livro intitulado: "Kasparov, percurso do Jovem Campeão" (Editorial Caminho).


# GERTRUDE, O COMPUTADOR QUE VAI VENCENDO OS ESTRANGULAMENTOS... GERIR O TRÂNSITO DE UMA GRANDE CIDADE 

AS habilidades de GERTRUDE não têm conto... Por exemplo, pode jogar com um sentido ou com o outro; pode desimpedir o BUS e demorar, mais ou menos, a dar luz verde aos carros. Se o computador falhar, há microprocessadores instalados em cada semáforo, programados para gerir autonomamente o seu cruzamento. Uma bateria de reserva, em caso de colapso, continuará a enviar o sincronismo para todos os semáforos. De que estamos a falar? Pois muito simplesmente de GERTRUDE - o computador que detesta engarrafamentos, um big brother amigável e superinteligente que, desde há alguns meses, comanda todos os semáforos da Baixa lisboeta.

GERTRUDE - Gestão Electrónica de Resolução do Tráfego Rodoviário Urbano Desafiando os Engarrafamentos diverge, e muito, do sistema computorizado de multiprogramaçāo que estava a funcionar em Lisboa desde a década de 70. Este sistema, embora também permitisse uma gestão descentralizada do trânsito urbano, baseava-se num conjunto de unidades (os submasters), que nāo dispunham de poder decisório.

Mas com GERTRUDE é possivel pra-ticar-se uma informática repartida, através de um Comando Central e vários PC's (Postos de Controlo), em que os minicomputadores ai instalados efectuam todos os cálculos de tráfego, em cada momento, e enviam as respectivas ordens para os seus semáforos.

O novo sistema apresenta, pois, esta grande vantagem: em cada instante, é capaz de avaliar a configuração do trânsito e procurar, por si mesmo, a melhor resposta.

Para que se tenha uma noção mais correcta das diferenças em relaçāo à multiprogramação, o chamado período de integração (o tempo entre cada decisāo), chegava aos dez minutos. Agora, GERTRUDE opera em tempo real, já que em vez da tal unidade submaster existe um computador de facto. Concretizando: até há bem pouco, cada alinhamento dispunha de 16 cruzamentos que eram geridos de uma maneira nada flexivel. Neste momento, por virtude de GERTRUDE, cada zona homogénea é gerida em tempo real por cada semáforo, cujo comportamento, em situaçōes normais, é resultante de uma ordem enviada pelo computador central.

## NOVE OPÇÖES

Enfiadas nos pavimentos das ruas de Lisboa, existem espiras de comprimento de cauda que, em cada meio segundo, informam sobre a situação do tráfego automóvel. O computador pode assim escolher, segundo a segundo, a melhor solução em face das respostas que lhe vāo chegando, provenientes desses discretos detectores, que registam as variações do campo electromagnético à passagem das massas metálicas.

Com GERTRUDE, a possibilidade de escolha de programas é infinita. O sistema dispōe de nove opçōes de tempo de ciclo (sinal vermelho a sinal vermeIho), entre os 60 e os 100 segundos e em pequenos escalōes de cinco segundos.

Dentro de cada tempo de ciclo, tem ainda a capacidade de reagir diferentemente consoante as situaçōes. Como já se disse, o sistema antigo era rigido, com
uma sequência fixa por cada programa. E se as desvantagens eram muitas, fa-ça-se justiça a uma vantagem de monta: com 300 detectores cobria-se toda a área de Lisboa, enquanto que em relação aos "informadores" de GERTRUDE, só na Baixa, colocaram-se 180 em apenas 50 cruzamentos, custando à volta de 15 contos cada um deles.

## PRIORIDADES <br> PARA OS TRANSPORTES PÚBLICOS

O novo sistema possibilita igualmente que sejam estabelecidas prioridades para os transportes públicos, ambulâncias e carros dos bombeiros. Neste caso, cada quartel dispōe de um teclado onde são escolhidos os percursos de acesso aos locais dos sinistros. O computador, no Posto de Controlo, recebe a informaçāo e reconhece que é um pedido com priorîdade, agindo em consonância. Cada viatura dos bombeiros está equipada com um pequeno emissor, o qual permite que GERTRUDE conte quantos carros sairam, abrindo uma onda verde para os "soldados da paz" e fechando aquelas artérias aos restantes transportes.

Por outro lado, se há coisas de que GERTRUDE não gosta, uma delas é que nos cruzamentos os carros fiquem trancados. Ao abrir os semáforos, GERTRUDE conta, criteriosamente, quantos veiculos podem passar, para que os cruzamentos fiquem desimpedidos.

Espectacular é, também, a sua actuação nas viragens à esquerda: GERTRUDE apercebe-se de quantos são os carros que pretendem efectuar a manobra e consoante o número, assim mantém o sinal mais ou menos tempo aberto.

## O CONCEITO DE GARRAFA

A fluidez do trảnsito gerido pelo sistema GERTRUDE inspira-se no conceito de garrafa: quando a invertemos, atabalhoadamente, o liquido tem maior dificuldade em escorrer: quando a inclinamos. suave e gradualmente, o seu conteudo e despejado mais depressa. No caso de Lisboa, as zonas excedentarias correspondem ao ventre da garrafa e a zona critica da Baixa, ao gargalo.

A historia de GERTRUDE tern dez anos e leva-nos ate Bordeus, uma cidade francesa que se debatia com colossais en-
no, quais sao as situaçoes de conflito de transito (intervalo veicular. filas de espera. taxas de ocupação por espira, etc.)

Os beneficios sào tais que, para la das opinioes positivas dos automobilistas comuns e dos taxistas. ate a propria Carris teve que melhorar os seus horarios, pois os autocarros comecaram a acumular-se em demasia, por viajarem tāo depressa.

Tambem em França, fol possivel registar uma reduçȧo geral da ordem dos 50 por cento de tempos de percurso dos autocarros de Bordeus (havendo linhas que melhoraram ate 75 por cento).

## O GRANDE SEGREDO E A COORDENAÇĀO

O grande segredo sera a coordenaçao. que ordena ao computador que laça tudo para que se sucedam as ondas. verdes. Os tempos de ciclo baixo sao os ideais. por produzirem menos tempos de espera para automobilistas e peoes. No sistema antigo multiprogramado, o tempo de ciclo maximo chegava a entrar em funcionamento as oito horas da manha e so ao fim do dia e que descolava.

Mas o GERTRUDE pode, ainda. me dir os niveis de poluiçảo. No caso da ca

garrafamentos de transito. Os equipamentos disponiveis no mercado, para a gestāo centralizada do tráfego urbano. nao satisfaziam os itens pretendidos pela municipalidade bordalesa, e, em particular. a um deles: a capacidade do computador gerir, em tempo real, os problemas.

Em Lisboa, cada um dos Postos de Controlo dispoe de um minicomputador. de 32 Kbytes de memoria, de uma consola de visualização e de acesso. bem como de uma impressora para o registo de dados e variaçoes do sistema. A frente de cada bancada. um painel sinoptico permite ao operador perceber, no terre-

Em Lisboa, o sistema esta ha algum tempo em funcionamento, mas ja se contam historias curiosas, como a daquele leitor da provincia, que, num vespertino. se insurgia contra a tao falada eficacia do modelo frances. Contava ele que se tinha deslocado a Lisboa, atravessando as Avenıdas da Republica e da Liberdade num enervante "pára-e-arranca" para depois, inesperadamente, percorrer a Baixa num apice. Afınal. sem disso se aperceber. o homem estava a tecer o melhor dos elogios. e so na Baixa que GERTRUDE opera. e em fase de optımizaçao
pital portuguesa. os detectores de poluiçao aında nao foram aplıcados. por via do seu preço elevado (cerca de 700 contos cada). As ordens de "poluiçao" sao tambem prioritarias: as luzes vermelhas acendem-se. ate se descongestionar o transito. quando numa dada arteria os gases dos escapes atıngırem niveis elevados

GERTRUDE - urna senhora muito formosa e altamente eficiente de que poucos se dao conta mas que veıo revolucionar no bom sentido o trafego citadino



Desloque o seu spray com as teclas $(0)$ e（P），esqueda e direita respecti－ vamente，e utilize a tecla（M）para usar o spray．
SAVE＂JARDINEIRO» LINE 0，para gravar o jogo．

JARD INE IRU
SPECTRUM 16／48K
SPECTRUM PLUS
TC2048 TC2068
 LS

GOFOR FED TO 25 STEP Q：CIRCL

110 LeT $X=$ 1：LE゙T $Y=$ ：एU SUB 1 000 LET $X=F \&:$ LET $Y=10: 00$ SUB
1000 LET $X=F$ ：LET $Y=15: 00$ SUD
1000 LET $X=F 4$ ：LET YEOD： 00 SUE

：LET F3＝F3－05：LET F4xF4－．025
142 LET $P=P+1$
150 LET C＝C＋（INKEY億＂P＂AND Cく2 1GOPRINT AT 18，E；INK 8：＂ 16S IF INKEY EMMC THNK PRINT AT B 2000
500 co TO ${ }^{110}$
1000 IF $X>3$ THEN LET $X=3$
1001 IF INT X $=3$ THEN PRINT AT 18

 1020 Y＇IF INT：$\times$ RETURN THEN PRINT AT 18
 1036 IF INT：XEQTHEN PRINT RT， 18

1040 G0 TO 3000
200 IF C＝3 THEN LET F1＝F1＋：S：． ERPTURN

EEP © $05,-8:$ PRINT AT $17, C+2 ; 1:$ RETURN


EDBO IF C $=18$ THEN LET F4 $\mathrm{FF}_{4}+15$
EEEP OE，－12：PRINT AT $17, \mathrm{C}+2 ;$

## SOFTWARE



SPECTRUM 16/48K SPECTRUM PLUS TC2068 TC2048


- ESTA variante do clássico jogo «BREAK OUT», vocé tenta evitar que a bola toque na sua linha defensiva, pois desta maneira o computador ganhará um ponto.

Através de um taco, que pode ser movido verticalmente. Voce defende da melhor maneira o seu território.

## TECLAS

Q - Cima
A - Baixo
SAVE «POING!!!» LINE 0, para gravar O jogo.

FOING!!
SPECTRUM 16/48K
SPECTRUM
TCEण48 TCMOEs


145 PRINT AT A 2 ; INK 4; " $\mathrm{H}^{2}$; AT
 00


 1010: NEXTFFR PRUSE 2. PRI


1015 PRINT AT 10,10; OUER 1;"FIM 1018 PRINT AT 8 O OUER $1 ; "$ UOGGD


 2025 LET F=1
EOSO PRINT AT 10,3j INUERSE 1; I 2031 LET FxF+1: IF F=7 THEN LET
 EOS3 BEEP . $\triangle 1, F:$ BEEP . $01, F+5: ~ 6$ GTO 能30 F =USR "R" TO USR "C"+7: READ I: POKE F I, NEXT F 5́170 DATA 50, 78,150,159,159,159, 75, 50
9030 DATA 195,195,231,219,219,23 180195 RETURN

GRAF ICOS
R-䉆 B-0 C-M


Preencha, recorte e envie o cupão

## CUPÃO DE ASSINATURA

R. Alfredo Roque Gameiro, $\mathrm{N} .{ }^{\circ}$ 21-1. ${ }^{\circ}$ Esq. ${ }^{\circ}$ 1600 LISBOA - Tels. $767326 \cdot 767339$

NOME

MORADA
Tel.
Junto Envio ©Chequen. ${ }^{\circ}$ $\qquad$ $\square$ Vale de correio Referente a 1 Assinatura Anual (11 números) da Revista "CEREBRO" a partir do $n .{ }^{\circ}$ inclusive.

JÁ NO
4\%ANO DE
publicação


## Uma bolsa à sua escolha

Nesta nova secçao vamos procurar ser um guia de ajuda na compra de cassetes para o seu ZX SPECTRUM. Nào so lhe daremos as últimas NOVIDADES, como iremos procurar informá-lo sobre os CLASSICOS - as cassetes de grande èxito, já com algum tempo e que você talvez ainda nào conheça, mas que queira possivelmente vir a adquirir. Também falaremos sempre do Software PORTUGUÉS.

Vamos entao à primeira bolsa, que tem nas NOVIDADES as cassetes: HIGHWAY ENCOUNTER e FRANKIE GOES TO HOLLYWOOD, no Software PORTUGUES: PRIORIDADE EM CRUZAMENTOS, e nOS CLASSICOS: FOOTBALL MANEGER.
Náo iremos indicar preços de cassetes, pois estes variam consoante as casas.


## HIGHWAY ENCOUNTER

- Jogo de acção para - Spectrum 48 K


## $\bullet \bullet \bullet$



Estamos no seculo XXI, num Pais habitado por uns robots bem divertidos chamados VORTONS, onde uma enorme nave cheia de extraterrestres aterrou numa auto-estrada e estabeleceu nela a sua base de ataque.
Os nossos amigos, que se encontram na zona 30 , vào ter a dificil tarefa de levar 0
LASERTON, poderosa arma a base de raios laser até à zona O , onde esta situado o quartel--general inimigo. Quando chega a este local o LASERTON e activado automaticamente e destruira a nave dos extraterrestres invasores Para esta missāo denominada HIGHWAY-ENCOUNTER
(encontro na auto-estrada). foram incumbidos 5 robots, chefiados pelo poderoso MAIN--VORTON (por nós comandado), que vai desimpedindo o caminho através de dificeis zonas e pesquisar as mais avançadas a fim de destruir obstáculos, reconhecer o caminho e abater inimigos. Para facilitar a missȧo há ainda outros 4 robots, chamados AUTO-VORTONs, cujo objectivo é empurrar o LASERTON e substituir o MAIN--VORTON quando este é destruido.
Um jogo com uma boa
qualidade gráfica, passando por
30 cenários diferentes, mas tornando-se por vezes
monótono, pois a auto-estrada segue sempre a direito (poderia ter um percurso mais
acidentado). Admitindo um só jogador de cada vez (e oito comandos para os movimentos), este jogo é o $3 .{ }^{\circ}$ trabalho da firma VORTEX, que ja nos deliciou com outros 2 grandes éxitos, o TORNADO-LOW-
-LEVEL e o CYCLONE e talvez siga o caminho do terceiro; por isto tudo um jogo a comprar

frankie goes TO HOLLYWOOD da Ocean

- Jogo de acção e aventura para o Spectrum 48 K


## -ee

FRANKIE GOES TO
HOLLYWOOD é o nome dum grupo britânico de "Rock» autor do L.P "The Pleasure Dame",

que serviu de inspiração ao autor da Ocean para elaborar esta cassete.
O jogador é uma "sombra" que vai percorrendo vários obstáculos até alcançar o PALÁCIO DO PRAZEF. Quando lá chega, a sua "sombra" fica à porta e vocé passa a ser uma personagem real. Mas até chegar ao Palácio (só Frankie nos pode levar), temos que enfrentar diversos cenários, tais como galinhas, salas onde existem jogos de video extremamente rapidos (jogos dentro do jogo), objectos que é conveniente apanhar, pois mais tarde iräo ser bastante úteis, etc.
Quando chegados ao Palacio do Prazer, que nào e mais de que um mundo dentro do nosso mundo, deparamo-nos com cenas bem actuais da política internacional, tais como - uma sala onde se pode atirar a um alvo - com a cara de Margaret Thatcher, ou assistimos noutra a um duelo em que se cospem mutuamente o presidente americano, Ronald Reagan. e o presidente soviético. Mikhail Gorgachev (uma antevisāo do autor relativamente à cimeira de Novembro na Suiça?)
Um jogo que tendo graficos com
cores bem definidas, e nào sendo dos mais espectaculares. e no entanto um bom entretimento, o que nos leva a aconselhar a sua compra.


PRIORIDADES EM CRUZAMENTOS - Didáctico para o Spectrum 48 K - 0 -


Para esta rubrica escolhemos um programa da Astor Software, que se tem distinguido no mercado nacional por uma louvavel regularidade em editar trabalhos de Portugueses, quase sempre de boa qualidade e virados para os mais variados temas.
Neste programa criado por Pedro Bandeira e Cunha, é posto perante várias situações de trânsito, mais propriamente problemas de prioridades em cruzamentos.

Como a finalidade de fazer um teste aos seus conhecimentos, é posto perante três hipóteses de séries de perguntas ( 10,20 ou 30). Depois de responder à série que escolheu, o computador dá-lhe a percentagem de respostas certas. Tem um cruzamento, quatro veiculos que podem ser os mais variados, como na vida real, camiōes, motos, bicicletas, carroças e ambulâncias, come sem urgência. Também têm assinaladas as direcçōes em que os veiculos pretendem mover-se. Depois quando for pedido, terá de assinalar ao computador a ordem que pensa correcta para a passagem dos quatro veículos. Atençāo, pois pode haver situaçōes em que haja a mesma ordem de passagem para mais do que uma viatura.
Programa bastante interessante, graficamente com boa apresentaçāo e com instruçōes bem explicitas que não trarāo dúvidas a futuros utilizadores. Se pensa que já sabe tudo sobre as regras do código da estrada, por que náo experimenta este programa?

FOOTBALL MANEGER - Jogo de simulação para o Spectrum 48 K $\bullet \bullet$


| PA9A | IRP - - |
| :---: | :---: |
| vender ou list | - |
| xmpr. scare etc | 3 |
| Obier map. | ¢ |
| pasar cup. | - ${ }^{\text {P }}$ |
| -odipicar navel | - Cever |
| mudars dequys | chanza |
| save 1090 | - cep |

Este é um programa já com algum tempo, tendo sido na altura um êxito de vendas na Inglaterra. Apareceu por cá a versão original em inglês e também cá saiu uma adaptada ao nosso futebol.
Neste jogo desempenhamos o
papel de treinador de uma equipa que pode sair de uma lista que nos é oferecida ou podemos prescindir dela e arranjarmos nós um nome, para os jogadores passa-se o mesmo - dispomos à partida de vinte e quatro, que podemos ou não escolher os nomes. Temos também hipótese de ajustar o nivel de dificuldade para o que acharmos mais conveniente. Depois de termos a equipa em ordem, vamos ao campeonato: começamos na quarta divisão, e como é lógico, o objectivo è subir às várias divisōes e alcançarmos o título de campeāo da primeira divisão. Para os vários jogos, temos uma listagem com os nossos jogadores, em que figura o seu
estado físico e psíquico. Dos que temos disponiveis, temos que escolher dentro deste critério os mais aptos, tendo em atenção os lesionados. Antes de cada jogo, o computador indica-nos a equipa com quem iremos jogar e em termos comparativos temos indicadores do estado moral, energia, defesa, meio-campo e ataque das duas equipas. Com estes dados podemos modificar ou não a constituiçāo da nossa equipa. Por fim temos o jogo, que se resume a remates à baliza e em que nāo intervimos, os resultados finais dos outros jogos da jornada assim como a tabela classificativa. Durante o campeonato temos ainda os
jogos da Taça, que como é óbvio, sāo por eliminatória. À partida temos uma quantia em dinheiro que usamos para cobrir despesas como: a compra de jogadores que aparecem à venda. Quando estamos mal de finanças, teremos que ser nós a vender.
Jogo que pode prender a atenção durante um par de horas, mas com o risco de vir a cair numa certa monotonia.


PÓE À PROVA A TUA IMAGINAÇÃO


A melhor-forma de conhecer os microcomputadores
Cassettes computer


Maior qualidade na côr
$\qquad$

## ERRATA <br> LINGUAGEM MÁQUINA <br> $Z 80$ ASSEMBLY (I) <br> Voltamos a apresentar devidamente corrigido, parte do artigo publicado no nosso último número. Por erro técnico saiu trocada a localizaçāo dos dois gráficos do referido artigo como duas abreviaturas «low nibble» e nāo lov nibble. $2^{\text {posiçảo e nāo }}$ 2 posição. <br> Os referidos gráficos deveriam ter entrado no fim do artigo. <br> Chamamos a vossa atençāo para a página que agora reproduzimos, já impressa correctamente.

Divide-se o número decimal por 2 e coloca-se o resto na posiçāo 0; seguidamente, divide-se o quociente anterior por 2 e coloca-se o resto na posição 1: repete-se a operação relativamente aos quocientes e restos sucessivamente obtidos até que o quociente obtido seja zero e avançando sempre uma posição no byte.

Veja-se o caso do número 129:

| Divisốo | Resto |  |
| ---: | :---: | :---: |
| $129 / 2$ | 1 | LSB |
| $64 / 2$ | 0 |  |
| $32 / 2$ | 0 |  |
| $16 / 2$ | 0 |  |
| $8 / 2$ | 0 |  |
| $4 / 2$ | 0 |  |
| $2 / 2$ | 0 | $\downarrow$ |
| $1 / 2$ | 1 | MSB |

Exemplo de conversỗo Decimol/Binário

Tente agora converter o 256 no equivalente binário.

Chegou ao bit 7 e o seu quociente ainda è diferente de zero, nāo é?

Concluiu entāo (e muito bem) que um byte não chega para representar 256D.
Na verdade, um byte pode conter no máximo 255D (correspondendo a 11111111B), porque o maior número decimal representável com oito bit's é $2^{8-1}$ (ou seja, 255D).

E mais: esta regra é geral para $n$ bit's, sob a forma $2^{n-1}$.

Como tal, para a representaçāo de 256D, seriam necessários, no mínimo, 9 bit's e, por outro lado, com este número de bit's, a maior quantidade decimal representável é $2^{9}-1$ (ou seja, 511).

Sintetizando, fixemos que um byte pode conter um valor decimal entre 0 e 255 e que, regra geral, para um número n de bit's, o maior valor decimal representável é dado pela expressāo $2^{n-1}$.

## ARQUITECTURA BÁSICA DE UM MICROCOMPUTADOR

Neste ponto, levantam-se três questōes:

- Onde é que se encontram as instruçōes?
- De que maneira é que o computador a elas acede e as manipula?
- Como é que o computador trata os conteúdos numéricos enquanto instruços?

As instruçōes no seu conjunto formam o programa e este não é, no fundo, mais do que uma sequência de bytes situados em determinada(s) zona(s) da memória (MEM) do computador.

Esta nova entidade introduzida - a memória - constitui a parte do computador destinada a armazenar as instruçōes e também os dados que serāo objecto de manipulação e transformação por parte do programa, com o objectivo da obtenção dos resultados pretendidos.

Aliás, a memória é uma das três partes básicas constituintes de um microcomputador ( $\mu \mathrm{c}$ ), sendo as outras duas o processador central (CPU) e um sistema de entrada/saída (I/O). Esquematicamente e como primeira aproximação ter-se-á:

A CPU (Central Processing Unit) é o cérebro do computador, estando a seu cargo a organizção e coordenaçāo de todas as tarefas realizadas por este.

Uma dessas tarefas é - após uma ordem de execução dum programa - ir buscar, uma a uma, as instruçōes contidas na memória, providenciar a sua execução e terminar na altura especificada pelo programa, devolvendo o controlo das operaçōes ao sistema. $\varsigma$

O sistema I/O (Input/Output) permite ao computador comunicar com o mundo exterior; é claro que, sem tal sistema, será bastante restrita a utilidade de um computador: já imaginou um computador sem possibilidades de conexāo a um teclado e a um terminal video?.

Os três órgāos (CPU, MEM e I/O) estāo ligados entre si por um conjunto de linhas_organizadas em grupos, que possibilitam a comunicação entre eles e que sāo os barramentos (BUS).

Vamos assumir que, no nosso caso, cada posiçāo da MEM é constituída por um byte ou como é também usual dizerse, que a unidade mínima de endereçamento é um byte.

Isto significa que, quando se pretende retirar ou colocar informaçāo da ou na memória, só se pode fazê-lo a um byte para cada posição endereçável desta.

Imagine uma pilha ordenada de caixas numeradas de modo consecutivo. Se considerar agora cada caixa como uma posição de memória (no nosso caso, um byte) e cada endereço como o meio de aceder a essa posição, então facilmente visualizará a MEM e se enquadrará no termo «posição endereçável".
Entretanto, referi-me a grupos de linhas organizadas a ligar os órgãos básicos do computador. Esses grupos sāo em número de três e servem objectivos deveras distintos:

- o barramento de endereços (ADRESS BUS), que serve para transportar o endereço que permite colocar ou retirar informação na ou da MEM e na ou da zona de I/O (que, em alguns $\mu \mathrm{c}$, se assemelha estruturalmente à memória e noutros se funde com ela);
- o barramento de dados (DATA BUS), que tem por finalidade transportar a informaçāo (dados e instruçōes) propriamente dita;
- o barramento de controlo (CONTROL BUS), que é um conjunto de linhas que partem da CPU ou chegam à mesma, com o intuito de emitir sinais de comando e de controlo a fim de coordenarem a acção global do computador, como já frisei.

As questoes relacionadas com a unidade de controlo (onde se inclui o CONTROL BUS) apenas esporadicamente serão mencionadas, pois ultrapassam o âmbito deste curso; portanto, deve ter isso em atenção nos esquemas apresentados.

Assim sendo, podemos desenvolver ligeiramente o esquema anterior:

Como já disse, assumiremos o byte como unidade minima de endereçamento e isso implica que devemos entāo considerar oito linhas para o DATA BUS e que, em geral, se designam por D0, D1, , D7.
Assumiremos agora que dispomos de dezasseis linhas para o ADRESS BUS (designadas por $A 0, A 1, \ldots, A 15$ ), o que nos permitirá endereçar $2^{16}$ posições da MEM (numeradas entre 0 e 65535); consideraremos, por outro lado, o espaço I/O distinto do da MEM e conectado ao ADRESS BUS através de oito linhas (Ao... A7), perfazendo um total de 256 posiçōes endereçáveis para este bloco.
TIMEX COMPUTER 2068
DOIS COMPUTADORES NUM SÓ...
Na linha do ZX/SPECTRUM ${ }^{\circledR}$ e compativel com ele (através de uma cartridge emuladora) apresenta-se mais potente graças à incorporaçāo de um sintetizador de som, um porto para cartridge, dupla resoluçâo gráfica, saída para monitor.
A adição do sistema Floppy Disk Timex permite-Ihe explorar novos campos de aplicaçāo onde a realidade ultrapassa a ficção.
Qualquer que seja o seu domínio de actividade encontrará uma aplicaçāo para

- Programas protissionais - Contabilidade; Stocks; Tratamento de texto; seuanbad əp oetsey !sopep əp əseg e médias empresas; Ficheiros personalizados.
-e!/eэ!!sẹuop oetse6 әр semerboid


ANDFOLDS
CONSULTE OS REVENDEDORES


NĀO NECESSITA GRAVADOR... settes. Bugs • Budgeter • Flight Simulator • CaBrevemente: Processador de texto
Gestor de leitor de código de barras. Gestor de leitor de código de barras.
Ouninझ O vavd viyegv virod vWn

CASINO 1

$1 .{ }^{\circ}$ PRÉMIO

Impressora Seikosha 50 S

Jorge Ferreira<br>Torre 4, $10 .{ }^{\circ}$ - A/Dt. ${ }^{\circ}$ Rebelva 2775 PAREDE

NESTE jogo vocé é o Pai Natal do ano 2000. Tem como objectivo apanhar todas as prendas que irāo ser distribuídas no Dia de Natal. Mas não está sozinho tem que evitar Robots comandados por uma força maligna.

Existem cinco níveis com os quais terá de ter uma estratégia diferente para recolher as quatro prendas de cada nível, mas atenção tem' que ser por ordem, a que terá de apanhar primeiro será a que estiver a piscar.

Para introduzir o programa siga as seguintes operaçōes...

1 - Passar o programa principal em Basic (listagem 1); depois de oter in-
troduzido correctamente, para o gravar faça SAVE «NATAL-2000» LINE 10;

2 - A seguir passe o HEXLOADER (listagem 2); faça RUN, e aparecerá o valor da memória que corresponde aos códigos hexadecimais que vai introduzir (sāo 8 de cada vez). Esses códigos estāo na listagem 3.

Depois de ter inroduzido tudo, o próprio programa grava o código máquina, aparecerá START TAPE, THEN PRESS ANY KEY e grave-o a seguir ao programa principal para verificar faça VERIFY «" CODE 40000,1240, e se não ficou bem gravado, grave outra vez fazendo GO TO 210.

BOA SORTE

Listagem 1



GRDOR 390 RESTORE 1140：FOR $N=1$ TO 18 READ A：BEEP ，13，A：NEXT N：GO 40D IF $J 0=1$ AND $0 \downarrow=a$ THEN LET ma：GUTO 360 4 420 LET JOE1：GO TO 3EO
 TO 200 ：NEXT N 430 LET $\mathrm{PN}=\mathrm{PN}+4000$ ： 50 5UB 560： 440 RESTORE 1170：LET $A=1$ ：LET 450 IF MU 33 THEN READ $A$ ：LET MU ＝1：IF $A=255$ THEN RESTORE 1170： LET MUI3：GO TO 450
$76=6$ THEN GO TO 780
RANDEMIN：RANDUMIZE USR 400000 HEN LET PN＝FN－5
490 IF PEEK 41577＝6 OR PEEK 415 500 IF PEEK $41577=178$ OR PEEK 4 $1578=178$ THEN EO TO 710

10 IF $J O=1$ THEN PRINT HT 0,3 ，
520 IF $J O=2$, THEN PRINT AT 0，25；
530 IF $P N=0$ THEN GO TO 780
540 GOTO 450
 ERIGHT D；INK 4；AT 日，23；＂e：＂；IN 580 PRINT INK E；RT 21，1；＂UIDRS ；AT $21.11 ; " N: " ; N 1 ; A T, \quad 21 ; 17 \dot{17}$ INK SUB 640

暩 NEXT N：POKE 405 OMIZE USR 402S1
EDO PRINT AT 1，D；INK 5；BRIEHT
E10 PRINT AT 20，D：INK 5 ：BRIGH T 1 ；＂
620 POKE $41149, \mathrm{NP}$ ：POKE 41150 ， 0 RHNDOMIZE USR $41082:$ RANDOMIZE LSR 41060
640 REM＊＊＊＊FRINT UIDAS＊＊＊ OSD IF U1＞3 THEN FRINT INK 4；AT EDO IF U 3 S THEN PRINT INK 6；AT 21，23；U2

E80 IF VI＜＝3 THEN PRINT INK 4； T 21，7； F （1，TO U1）
al

RETURN
720 LET $F N=P N+250$
NEXT N：LET $0=0-1$ ：IF $0=00^{\circ}$ THEN
－ 740 POKE 41150，0：RANDOHIZE USR 41082：GU TO 510
T50 IF UO＝1 THEN LET N1 $=N 1+1$ ：L ET NR＝N1：IF N1＞5 THEN LET N1＝1： GU SUB 980
760 IF $J=2$ THEN LET N2＝N2＋1：L
ET NR＝N2：IF N2＞5 THEN LET N2＝1： G0 SUB 950
770 LET U＝4：LET $F N=F N+500$ ：CLS GO TO 420
7 70 REM $\because * * *$ MORTE $* * * *$
K $4045 \mathrm{LET} X=$ PEEK 40453 ：LET $Y=P E E$
SOD FOR $N=30$ TO 20 STEP－1：FOR $B=.001$ TO ．01 STEP ．DOD ：BEEP B －N：NEXT E：FRINT AT X，X＇Y NEXK ${ }^{\text {iN }}$ ©i0 IF JO＇ 1 THEN LET Ui＝U1－1：L ET P1＝PN－2995：LET 01＝0：IF P1＜0 THEN LET P1＝0
820 IF JO＝2 THEN LET UE＝U2－1：L 830 POKE 41575 D：POKE， 41575 \＆ 0 ： $N=1$ TO 100：NEXT N：ELS ！RETUR N
840 REM＊＊＊FIM DO NOGO＊＊＊
S50 IF U1 $=0$ THEN LET FP $=1$
H7D PRINT AT 10,10 IN INK EK，FLAS

380 IF FFF＝1 THEN PRINT AT 14,$8 ;$
INK $5 ; " C O M$
890 IF FF＝E，THEN FRINT HT 14，$\Xi$ ；
INK S＇＂COMM＂；PE；＂PONTOS＂BEER 910，N：NEXT N
910 CLS
9 O RETURN
930 REM MAIOR．PONTUACAO
940 IFP1＞MPD AND PIン＝PZ THEN L
ET MPO＝P1：PRINT．AT 10，10；M 1 N
GADOR $\because$ ；$A T$ I2，D；＂UOCE．＇$E O N S E G U I U$
F MAIOR PONTUACAO＂：INPUT：＂NOME
（MAX． 3 LETRAS）？＂，LINE M
950 IF PE＞MPO FND PO＞P1 THEN LE
TMPO＝PE：PRINT AT 10，10；＂
HDOR＂；AT 12，D；＂UOCE＂EONSEGUIUA
MAIOR PONTURGAO＂：INFUT ；＂NOME
QEO IF LENRMS 3 ？THEN EEEPM $5,-1$
D：LET MPO＝MPA：GO TO gこ̃
970 CLS GO GO 120
ged FOR N＝$=1$ TO 200：NEXT $N$ ：©LS
1000 PRINT AT 5,6 ；INK 6；PAPER

－DOITO．DI STEF DOE：BEEPM，N：
NEXT M：NEXT N
1010 PRINT AT 12， 2 FLASH 1；FAP
ER ET INK Q；PAPER 7；י＇CHEGOU
102Q RESTORE 150；FOR $N=1$ TO 34 READ $A$, B：BEEF A，B：NEXT N 1030 PRINT INK 5 ．$:$ MAS ESP ERE ：．．＂：FAUSE 200
1040 PRINT INK E BRIGHT 1；＂．．AH ！AH ！AH ！DESCULPE MAS：．：
1050 PRUSE 50

IR GUTRA UEZ F＊RA
NFUSAO＂


GRAFICOS UDG


Listagem ${ }^{2}$

10 REM PROGRAMA PARA CARREGAR 20 REM CODIGO MAOUINA EM 25 REM HEXADECIMAL 30 CLEAR $39999:$ POKE 23009， 25 POKE 23658,8
4D DEF FN P $(X)=C O D E H(X)-48-7$ ＊（CODE H（X）$>=65$ ）
ER 50 LET EN $=40 D 00:$ BORDER D：PRP 60 PRINT MOMEMORIA

CODIGO
70 POKE 23692，－1：PRINT＂＂；EN
＂ 80 LET SOMR＝0：INPUT＂CODIGO＝ ＂GLINE H H H事〈〉16 THEN PRINT H 1 ；AT ${ }^{1}$ 品；
BUZIDG！
100 FOR BEEF 1，20：GO TO 80

110 IF NOT（iHs（N））＝＂日＂AND H\＄（

 HEXRDECIMAL MAL INTRODUZIDU＂： EEF 1，20：GO TO 80
120 NEXT N
130 FOR $N=1$ TO 16 STEP 2：POKE EN，16＊FN P（N）＋FNP $(N+1)$ ：LET SOM $\mathrm{F}=50 \mathrm{MA}+$ PEEK EN
140 LET EN＝EN＋1：NEXT N
150 INPUT＂SOMA＂$=$＂ 50 ：IF SOMA〈〕SO THEN PRINT H1，AT 1，D；＂HEX ADECIMAL MAL INTRODUZIDO＂：BEEP 1，20：LET EN＝EN－8：GO TO 80
160 PRINT H\＆
170 IF EN＞41332 THEN GO TO 190 $\begin{array}{ll}170 \\ 180 & \text { EN TO } \\ 180\end{array}$
190 ELS：PRINT RT 11，0；＂CONSEG UI－0 ！AGORA UAMOS GRAUAR O CODI GO MAOUINA NA CASSETE IR AO PROGRAMA PRINCIPAL 2DD PRINT＂EM BRSIC GUE JA＂INT RODUZIU
210 SAUE＂NATAL2000CODE＂CODE 4 0000,1240

Listagem 3

| Memoria | Od | Soma |
| :---: | :---: | :---: |
| 40000） |  |  |
| 008） （16） | 20000045097 |  |
|  |  |  |
|  |  |  |
|  |  |  |
| 408 |  |  |
| 408 |  |  |
| 400 | 03 |  |
| 40058） <br> 40096 |  |  |
| 40104 | 9D7EFEOA3 |  |
| 1 |  |  |
| 40.1 | D4E0100 |  |
|  |  |  |
|  | 01303F1 |  |
|  | 000 |  |
|  |  |  |
|  | 18 |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  | ${ }^{\text {a }}$ |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  | C93AE89E4711 |  |
|  | 发 |  |
|  |  |  |
|  |  |  |
|  |  |  |
| 328 | D49E3ADEA1FE®i20 |  |
| 4033 | O8CDOS9E32069E18 |  |
|  | 083E0700209E |  |

403523 9E22049EED4B049E 40360）CD49907ECBT72043 40368；04CD49907ECB7T20 40375；3FC1CD499D7E3267 40384）AEAF $7704 C D 49907 E$ 40392）3265AこAF PTED4B04 40400）9EC0499DTE3269A2 4040S：3E05773A0E9ECDE1 40415；9DED4B049E04CD49 40424）9D7E3EEAR 3EDS77 40432）3ADE9E3CCD2190C9 40440）C1E043049E3EDT3A 40448）069E18C9140E0100 40456）011F00ED40CB4028 40464）042c3ED1C9CB4S28 40472）04203ED3C9085028 40480）04243E05C9CB58C8 40488）253EDTC901FEDFED 40496）40084020042C3E01 40504 ？C908482004203E03 40512）C901FEFBED40CE4Q 2004253E05c901FE 405 40544 ） 40552） 40550） 40568） 40576） 40584 4000 ดू 40508？ 40016？ 40624） 40632） 40040 ） 40648； 40556） 40664 ） 40672； 40680 40688） 40595； 40704？ 40712 ？ $40720)$ 40728） 40736 ） 40744 ） 40752） 40760） 40788） 40775） 40784） 40792 ） 40800 ？ 4080. 0816 403．4． 40332 40840 ． 40348 ？ 40856； 408.4 ） 40372； 40880） 40888 40895； 40904 ； 40912； 40920） 40928 ； 40936；边 30 10AFF11415日B31 40960 ）F7F5月0002001月000


40968）2001月0918041月091 40975； 8041820185058207 40984；E305F00020058030 40992； 2005810001908008 41000 ：00158008E0058000 410083020598000030998 F 41016）E0009C003F599000 41024． $0009 F D 86007 F 82 F F$ 410：32；FCD1820004018500 41040 ） 0501000000000000 41043 ） 0000000000006 41056 －0000000011669Eこ1 41064；C3AD011E00EDBDE1 41072）049E3EDF 77 E3SEDE 41080）77C9DD210EAD3ABD 41088）H047110800DD1910 41095；FC3ABEAD57157AFE 41104）0020180046000C4E 4111E；013E0BED2190CD49 41120） $903 E 427700230023$ 41128）1518E30D4600004E 41136；013EDBCDE19DCD4． 41144）903EBETアE9010400 41152） 0000000301030301 41160） $1101021101031 E 03$ 41168；031E111EO2111EDE 41176；DED：3020E0211050 41184） 1100000000000901 41192；0C1E1301021E0こ01 41200；131E1301021E0L1E 41208） $131 E 020113061313$ 41215， 13010 E100201131E 41234 ；0F1E131402010000

[^0] $=$
$=$
$=$
$=$
$=$
$=$

## Goto <br> BASF FlexyDisk．

Tecnologia de ponta para a sua Segurança．


## －

Lisboo－Telef． 562511
Porto－Telef 674051

## Luís Filipe Ribāes Monteiro Rua Cândido dos Reis, S. Gonçalo 4600 AMARANTE

# FOCHINO 

s
OU um leitor da revista Mini Micro's e, desejo, em primeiro lugar, felicitá-los pela vossa excelente revista.
Tendo já há algum tempo realizado este programa, decidi «neste momento" enviá-lo para a vossa iniciativa "Página Aberta".

Para o caso de quererem publicar, o programa contém todas as instruçōes necessárias para jogar.

Obrigado pela atenção prestada




```
    IE FLOT TE,G EFHU EGB,D DFHL
B, 15E DRAL - ED, DRAMD,-15E
```



```
    1コ FFINT HT G,L InN& 4;" U土口\XiS
```



```
    S", AENT A: FRIHT AT G:OOS IH
```




```
    B GET Dt=INT AFNEO141+10
```






```
DF fi=t, THEN GO TO 4%
    HE FEINT AT EE, fI; FHFEF ב,CHE
$14日
    4, IF (F=% T THENGOTO 4G
    4FLET If=% i FGE E=0 TGTーツi
    En TIT 43 NEXT 2
```



```
    50 FFIHT GT NOM
```



```
1.1. LET EEO:Ga. LET dE!=Et
```







```
Q!
```





```
    110 FFITHT AT UEG,WEG:" ", HT CEE
```




```
    IOQ IF HTTF RX:y%\=ES THEN EO
    140 GO TO $9
```



```
    FFIINT 所 1,1%,Eに: FFINT HT ag:
tE, FLASH l;OHF:$ 145
    E1B FOR &=ETO 4E ETEF &
    &I EEEP d,g@Z,-已见
    E1E NEKT d
    EIE FFFINT HT まa, te
    EEO FOTG 14
```





```
4E
    30% FOF d=a'% TO I STEF - - 
    S1I EEEF d 100R, E
    31E NEXT G
    SIE FRINT AT
```



```
& 145: LET EG=EG-E: FRINT AT B:B
```



```
    TG w1: FRINT HT"Q:E+1, M":NEXT
    410 FOS d=| TG 1G
    411 EEEF NL, INT (FHO&EQ:-EQ
    41E NEYT #
```






```
    E15FOF!=5GTO-1E ETEF-1 E1D LET L婁="INETFUNOEE
```


W口E deve mover a
 Gr arantaj位 que arersegle，a



Tera EGH－EORTE：

 ENL虫：FRINT L虫T：EEEF 1 EE，E ODE L中？『－
ESEFRIAT FT B，IE：INK E FAFEF FETVINT AT B 1：＂INETFUOE FFIIT HT 12,4 INE 3 ＂יTETG， E Frrerigsay urdas．＂．FFINT A T 14．10；INE 4；＂EOH－EDRTEI FFINT HT LE，E；INE E COMANLOE

da 厄リ「この
EEE FFINT FT 1E，14：INK E，CHE：
144 AT 18,16, INK 4 GHFW I4E：HT
1E，1E，INK 5，CHF： $15 E$
EOFEINT 矿 E1，E：INK 马，＂FOr
LUIE FILIFE F，F HFDTEIFO：FOINT
HQ；INK E；＂Earregue nu

 NLET 601＝0
BG FFINT FT B，E；INR EOT：

e IF INKEY串＝… THEN EO TQ EEQ RETUFN
10 Q EEH
1010 EEETOFE $18 E \square$
10 BO FEFE a t：IF a＝E日 THEN FETU Fid
1050 IF $6=9 口$ THEN FHUSE $5+5$ ：GO TO 1020

10E DFTH

lQE EATA EB， 19


2090 EATA GEO
1EDO FETURN

EQID FOF $1=0$ TO E EEEF ，O1，－10
ZOEG EDFDEF D：FAFFEF D：DL B I IM
H 4 FFINT HT B ENK EFIGHT 1．＂MELHGFE FONTUAGUE

 NE：T 3
2070 FFINT H0；INK B；EFIGHT 1．＂

ERE FGF L＝TM 150

 CDE NE：T L
 0
2100 FETUFT



－1 F FEAC 3 事：FFTNT FT L， 15
 HT AT B 子辛：NERT $L$

 1日解


 －1rg．





THEN BO TGEDO
50ge INK E FETVA
Gige DHTA





GOIG FFINT AT 14，FGF $=1$ TG

 E0E0 FFINT BT 19，IE；INK E：＂FAFH EENECOMT

DEEEJG Dutro jog日

 E180 FOF でEQTG－ 50 STEF－S：EE
 Q1．$-2+10$ NE NT Z Q110 EEEF ：15：－5：EEEF ．15：－10 EEEF ．13．1
 sle日 FRINT मT 21 I．IHT A TalAE

 GOTVGED
 FTE EREME
6145 FOF $\because=1$ TIE
E1SQ FOF L $\angle O T$ TO STEF S EEE 2 Da7， AEEF DO1 EO－HES ： EEEF DBE： 1 ＝NE TT I





GEED EHUEE 200
GEGE EFYE＂FIGITIGO LIUE 1
大日或 㱜

G5月FICOS



# DA LINHA MSX 



NO seguimento da incursāo da Philips na linha de computadores domésticos com sistema padronizado MSX, iniciada com o VG8010, aquela companhia lançou recentemente o novo VG8020 que comporta algumas vantagens significativas sobre o modelo anterior.

As consolas de ambos os modelos incorporam o processador Z80 funcionando a 3.6 MHz , o que permite a utilização de uma larga gama de software CP/M de gama profissional e semiprofissional. A configuração do padrāo de memória interna de interpretaçāo MSX--BASIC contém 32K ROM. O VG8020 tem 80 K de memoria RAM (dos quais 16K sảo video RAM) enquanto o VG8010 tem 48K de RAM. Para ambos os sistemas o total de capacidade pode ser ampliado para mais de 128 K com a inserção de cartridges de expansāo RAM. Duas entradas standard para cartridges estão acessiveis sob uma tampa de plástico transparente esfumado, estando preparadas para receber cartridges ROM
(por exemplo, contendo jogos e programas de estudo), cartridges de expansão RAM e ligação de interfaces periféricos. O VG8020 tem um interface standard de impressora permitindo o seu uso simultâneo com floppy disk e cartridges de expansảo.

O processador video dos Philips MSX pode definir 256 "sprites" (objectos em movimento) dos quais 32 podem ser accionados simultaneamente com deteç̧ão de colisāo a alta velocidade, em jogos de movimento. É possível atingir 16 cores com a resolução de $256 \times 192$.

Os dois modelos MSX comportam, no seu teclado, 253 caracteres diferentes, alfanuméricos e gráficos. Os textos apresentam 24 linhas de 40 caracteres, enquanto no modo grático são possiveis 24 linhas de 32 caracteres.

O sistema standard MSX garante um amplo a constante aumento do software disponivel, existindo ja uma vasta gama de programas comerciais, tanto da Philips como de outros fornecedores. Um leitor de diskettes conectado ao Philips MSX
dá a este micro importantes possibilidades, como rápido acesso a grandes volumes de informacâo. O sistema pode ser ligado a um televisor a cores comum ou, preferencialmente, utilizar um monitor monocromatico de fosforo verde BM7502, ou o monitor a cores CM8510.

Os micros VG8010 e 8020 utilizam um interpretador MSX-BASIC com 130 instruções, o que o torna significativamente avançado se o compararmos com os outros BASIC's de apenas 85 instruçōes. A conexāo do leitor de diskettes exige a utilizaçảo do sistema MSX-DOS especialmente desenvolvido para controlar as operaçōes de escrita e leitura do disco. O formato do disco MSX-DOS é o mesmo que o usado no PC-DOS e no standard MS-DOS, pelo que nos equipamentos MSX com MSX-DOS podem ler-se igualmente diskettes para IBM PC e compativeis (tendo em conta tambem o formato fisico das mesmas). Diskettes de micros que utilizam CP/M podem tambem ser lidas utilizando o equipamento especial de programação.

## ESPECIFICAÇŌES TÉCNICAS

DOS SISTEMAS PHILIPS MSX

## Consola VG8020




Colecção "ARTE DE VIVER"

## MICROCLUBES

# A FÉNIX RENASCIDA 



## Por ReNato reis

Aoptimização eficiente de um programa depende, em grande parte, da experiência do programador. Esta optimização que deve representar a meta final do programador reflecte um trabalho de pesquisa e depuraçāo através do qual se pretende objectivar uma execução mais veloz e uma menor ocupaçāo da memória disponivel. Para tal há que conhecer em profundidade as regras do jogo a fim de se poder tirar o melhor partido da situaçāo com que se depara.
Estas nossas conversas não pretendem visar o programador profissional mas sim o utilizador comum, aquele que adquiriu o seu computador com o único propósito de poder «brincar» em sua casa, nos momentos de ócio, ou de poder "programá-lo" no intuito de mais facilmente proceder à gestão doméstica das suas receitas e despesas, ou de ajustar a «máquina" à consecução de determinados objectivos didácticos.
À medida que se avança na programação a procura de algoritmos adequados vai-se tornando cada vez mais fácil mas, em contrapartida, cada vez mais ambiciosa. As cem linhas que inicialmente conseguem a solução sāo já insuficientes porquanto há, agora, o desejo de visualizar mais informaçāo no écran do monitor/TV, de criar grafismos mais ricos e sofisticados, ou obter maior velocidade execucional. Para quem possue o Tl-99/ /4A de base, os 16 K . parecem representar uma séria limitação, nāo só pela capacidade oferecida mas também pelo seu BASIC residente, cujo interpretador apresenta efectivamente uma resposta assaz lenta. Há, porém, processos de ultrapassar estes inconvenientes...
Um deles reside na eliminação de todas as linhas de programa que contenham REMARK (abreviadamente REM), as quais nāo só gastam memória como atrasam ligeiramente a sua execução. É conveniente a utilizaçāo de REM'S quan-
do se elabora um programa a fim de documentar pormenorizadamente os diferentes blocos de que ele se compōe. O coordenador desta Secção tern por hábito documentar, sem qualquer parcimónia, os seus programas aquando da sua feitura. Logo que ela é ultrapassada objectiva entâo a listagem do programa através de uma impressora após o que elimina todos os REM'S (um outro programa encarrega-se de o fazer!) gravando finalmente o produto acabado.

Quem nāo disponha de impressora poderá gravar o original em cassette ou disquette (com REM'S) e depois fazer uma cópia (sem REM'S). Aliás este procedimento é aconselhável em todos aqueles programas de interesse já que, por vezes, surgem acidentes imprevisiveis que destroem totalmente informação útil e preciosa. Nestes casos a única tábua de salvação é o "back-up" ou cópia.

Outro processo consiste na definiçāo das variáveis utilizadas. Tivemos já ocasiāo de referir, noutro artigo, que estas poderiam ser designadas com um máximo de 15 caracteres o que facilitava grandemente a identificaçāo dos seus próprios conteúdos. Assim, os exemplos:
LIVRO\$ = «A SELVA" (livro)
MORADA $\$=$ «RUA RODRIGUES FARIA" (rua)
PAPELARIA $=329785$ (telefone)
seriam muito menos ambíguos do que
$L \$=$ "A SELVA"
$M \$=$ RUA RODRIGUES FARIA"

## $P=329785$

Contudo, num programa extenso em que as variáveis aparecem repetidas vezes a situaçāo pode - e deve! - ul-trapassar-se, quando o objectivo é poupar memória. definindo-as com apenas um ou dois caracteres e referindo depois os seus significados numa linha de REM. Assim,

Se LIVRO\$, MORADA\$ e PAPELARIA se repetirem dez, quinze ou vinte vezes por todo o programa será preferivel substitui-las por L\$, M\$ e P indicando, depois, noutra linha de REM, os seus significados, como por exemplo:
500 REM L\$=LIVRO, M\$=MORADA, $\mathrm{P}=\mathrm{PAPELARIA}$

Um terceiro processo consiste na utilização de sub-rotinas sempre que um determinado conjunto de instruçōes se repete por todo o programa. Uma sub--rotina pressupõe um direccionamento do fluxo do programa a um dado ponto com retorno ao ponto imediatamente subsequente àquele de onde partiu. Difere da instrução GOTO que se limita a um simples "salto" sem retorno a menos que outro GOTO o execute.

A sub-rotina representa muito simplesmente um subprograma dentro do programa principal. Refere, por isso, um conjunto de instruçōes que é chamado sempre que tenha de ser executado, sem necessidade de se repetir (escrever) no programa esse mesmo conjunto. Vejamos um exemplo no qual se definem duas sub-rotinas:
a) Obtenção, através de um ciclo, de um «tempo de espera» suficiente que possibilite a leitura de texto no monitor;
b) Impressão normal de texto que se irá repetir um sem-número de vezes.

## 100 CALL CLEAR

## 110 PRINT "TESTE 1"

## 120 GOSUB 260

130 GOSUB 290
140 GOSUB 260

## 150 CALL CLEAR

160 PRINT "TESTE 2"
170 GOSUB 260
180 GOSUB 290
190 GOSUB 260
200 CALL CLEAR
210 PRINT "TESTE 3"
220 GOSUB 260
230 GOSUB 290
240 GOSUB 260
250 END
260 FOR I=1 TO 500
270 NEXT I
280 RETURN
290 PRINT "SUBROTINAS"
300 PRINT " .... "
310 PRINT " EXEMPLOS "
320 PRINT " VARIOS "
330 RETURN

## ANÁLISE:

100, 150, 200 - Limpeza do écran.
110, 160, 210 - Impressão de curtas mensagens.

120, 140, 170, 190, 220, 240 - Direccionamento à sub-rotina da linha 260 (tempo de espera).

130, 180, 230 - Direccionamento à sub-rotina da linha 290 (impressão de texto).

250 - Fim de programa, o qual pára a execução deste e impede o fluxo de penetrar de novo na área das sub-rotinas.

## CONCLUSŌES FINAIS:

A utilização de sub-rotinas pode, na maior parte dos casos, poupar considerável memória porquanto os conjuntos de instruçōes que as definem são mencionadas uma só vez e depois chamados sempre que necessários. Repare-se que as linhas 120, 140, 170, 190, 220 e 240 evitam ter de repetir 6 vezes as li nhas 260 e 270 enquanto que as linhas 130, 180 e 230 evitam, por seu turno, a repeticão (3 vezes) das linhas 290 a 320. Repare-se ainda que há um outro conjunto de instruçōes formado pelas linhas

120, 130, 140 que se repete 2 vezes no programa - linhas 170, 180, 190 e 220, 230, 240 - pelo que poderá passar a constituir uma nova sub-rotina. Teremos entāo:

## 100 CALL CLEAR

110 PRINT "TESTE 1"
120 GOSUB 200
130 CAL工 CLEAR
140 PRINT "TESTE 2"
150 GOSUB 200
160 CALL CLEAR
170 PRTNT "TESTE 3"
180 GOSUB 200
190 END
200 GOSUB 240
210 GOSUB 270
220 GOSUB 240
230 REIURN
240 FOR I=1 TO 500
250 NEXT I
260 REIURN
270 PRINT "SUBROTINAS"
280 PRTNT "
290 PRINT " EXEMPLOS "
300 PRINT " VARTOS "

## 310 REIURN

o que nos poupa, como facilmente se observa, duas linhas de programação. É possível, no entanto, uma redução muito maior.

## 100 CALL CLEAR

110 PRINT "TESTE 1"
120 GOSUB 200
130 CALL CLEAR
140 PRINT "TESTE 2"
150 GOSUB 200
160 CALL CLEAR
170 PRINT "TESTE 3"
180 GOSUB 200

## 190 END

## 200 FOR I=1 TO 500

210 NEXT I

## 220 PRINT "SUBROTINAS"

230 PRINT
240 PRINT " EXEMPLOS "
250 PRINT " VÁRIOS "
260 FOR I=1 TO 500
270 NEXT I
280 RETURN
Desta feita, como as duas sub-rotinas sāo executadas sequencialmente, sempre uma após a outra, transformámo-las numa só, o que nos permitiu encurtar o programa em 4 linhas. Chamamos de novo a atenção do leitor para o facto de que todos os exemplos apresentados até agora nesta Secção estāo aqui apenas como exemplos a fim de melhor mostrar "o modo de mexer nas coisas". Por isso mesmo poderāo não convir em determinadas situaçōes.

No caso presente, o melhor processo seria o de refazer completamente o programa poupando substancialmente o número de linhas a utilizar.

## 100 FOR C=1 TO 3

110 CALL CLEAR
120 PRINT "TESTE"; C
130 FOR I=1 TO 500
140 NEXT I
150 PRINT "SUBROTINAS": ".... ": " EXEMPLOS ": " VARIOS "

160 FOR I=1 TO 500
170 NEXT I
180 NEXT C

## ANÁLISE:

100, 180 - Abertura de um ciclo que se processa 3 vezes na medida em que a impressão de texto se verifica esse mesmo número de vezes. A variável de controlo $C$ recebe estes valores sequencialmente, 1, 2, 3 e compara-os com o parâmetro final do ciclo (3), parando a sua execução logo que esse valor atinge 4, como consequência do NEXT C.

110 - Limpeza do écran.

120 - Impressảo da primeira mensagem, "TESTE". Não há necessidade de apor um espaço em branco na constante textual ou alfanumérica "TESTE" a fim de provocar a impressāo do valor contido em C separada do texto. Recor-de-se que qualquer entidade numérica, quando tal, é sempre precedida de um espaço reservado ao sinal de que está afectada, mas nāo visivel (implicito) quando o valor é positivo, o que é o caso presente. Poder-se-ia, em contrapartida, optar por uma concatenação gastando, porém, mais memória. Assim:

## "TESTE" \&STR\$ (C)

130, 140, 160, 170 - Processamento de novo ciclo que objectiva um tempo de espera.

150 - A utilização do separador «:» permite direccionar para a linha seguinte de impressão o texto desejado.

Para quem disponha do módulo "EXTENDED BASIC» teremos ainda a hipótese de compactar o programa o que nos permitirá escrevê-lo da maneira seguinte:
100 FOR C=1 TO 3 : : CALL CLEAR : : PRINT «TESTE»;C : : FOR I=1 TO 500 : : NEXT I : : PRINT «SUBROTINAS»: ".... »:« EXEMPLOS »:
"VÄRIOS": :
FOR I=1 TO 500 : : NEXT I : : NEXT C

Através do comando "SIZE" teremos agora oportunidade de verificar (só em "EXTENDED BASIC") o número de "bytes" ganhos em cada uma das versōes apresentadas e que serão respectivamente 13625, 13648, 13666, 13764 e 13817. Por outro lado, se cronometrarmos os "tempos execucionais" verificaremos igualmente que as últimas versōes são mais aceleradas, cerca de 12.5 segundos para 14 segundos iniciais.
Por norma, quando "pegamos" num programa, tentamos modificá-lo de acordo com a nossa experiência e idiossincrasia. Procuramos sempre combinar grafismo com texto de modo a obter um "visual" - como agora se diz - mais rico. De momento estamos optimizando um programa bastante longo de "Gestāo de Ficheiros" em que o seu autor recomenda ao leitor que não procure introduzir grandes alteraçōes porquanto o programa se encontra já bastante optimizado. O «trabalho" já efectuado por nós permitiu-nos, contudo, introduzir-lhe grafismo, mais informaçāo, maior "aceleração" e, sobretudo, «roubar" cerca de 2 K . o que se nos afigura substancial.

# NÚCLEO DE UTILIZADORES DO TI-99/4A 

Eng. ${ }^{\circ}$ Fernando Soares da Costa
Rua Martins Barata, Lote F, r/c Esq.
1400 LISBOA
Carlos Manuel São Bento Ribeiro
Travessa do Marta Pinto, 17-1. ${ }^{\circ}$
1300 LISBOA
a continuar.

## SDRAGON



DRAGON 32 - $39800 \$ 00$ - MICROP 6809; 32K RAM + 16K ROM: INTERFACES INTEGRADOS P/: DRIVES (até 4 de 200K/cada), IMPRESSORAS tipo CENTRONICS MONITOR, TV. CARTRIDGES. GRAVADOR C/COMANDO, SOM EXTEANO. etc LINGUAGENS: BASIC MICROSOFT, ASSEMBLER, FORTH, LOGO PROGRAMAS p/: EDUCACAAO, PROF LIBERAIS, EDU. CACAO, BASE DE DADOS, STOCKS, CONTABILIDADES. SALÁRIOS CONS MÉDICOS, etc. etc.

DRAGON 64 - $53700 \$ 00$ - mesmas caracteristicas que - D32 mass 64 K RAM; SAIDA SERE RS 232 C. AUTO REPEAT EM TODAS AS TECLAS. ÉCRAN de 24 linhas com 51 caracteres c) OS9 (DOS) LINGUAGENS mesmas que DRAGON 32. mais PASCAL. C. COBOL e BASIC 09 DOS OS9 DOS OS9 (Unix like) como opção.

## ACEITAM-SE AGENTES EM TODO O PAIS



MICROCOMPUTA: JRES • ESTABILIZADORES DE TENSÁO • MODEMS TELSAT - COFRES P/SUP MAGNET- CONDICIONAD DE AR • DESUMIFICADORES • PAV. FALSO - ETC
R. Oliva Teles. 251 - Prala da Granja - 4405 Valadares Tel (02) 7624108-1932-0092 - Tix 24400


SALÃO INTERNACIONAL DO EQUIPAMENTO DE ESCRITORIO EINFORMATICA
FEIRA INTERNACIONAL DE LISBOA
29 JANEIRO • 2 FEVEREIRO• 86

INTI RNAIONAL BUSINESSFQUIPMI NI IND (CNIIUIIRI NI IIBIK IK

$\cdot F \cdot I \cdot L \cdot E \cdot M \cdot E \cdot$

## MICRO PRODUTOS / NOVIDADES / MICRO

## OS MICRO- <br> COMPUTADORES COMMODORE PC 10 E PC 20

A Teledata começou a comercializar os microcomputadores
Commodore PC 10 e PC 20 ,
computadores estes que já têm
grande sucesso na Europa,
dado serem 100 por cento
compatíveis com os IBM PC e a
preços bastante baixos.
Vejamos algumas das suas caracteristicas: ambos sāo dotados de um
microprocessador de 16 bits 8088 e de uma memória de 256
K RAM, expandivel até 640 K
RAM.
A principal diferença entre eles situa-se ao nivel de capacidade de memória virtual; assim, o PC
10 possui 2 a 4 unidades de disquetes de 360 Kbytes formato IBM. O PC 201 disquete de 360 Kbytes e um disco duro incorporado de 10 Mbytes. Ambos funcionam com o sistema operativo MS/DOS 2.11, considerado o sistema operativo mais divulgado no mundo.
Graças ao seu sistema operativo os PC 10/PC 20 podem ter acesso a milhares de aplicaçōes já disponiveis tendo dado provas em gestāo e borótica (tratamento de textos, tabelas, gestão de ficheiros, contabilidade, gráficos). Para além disso, milhares de aplicaçōes especificas permitem aos PC 10/PC 20 adaptarem-se a todos os sectores de actividade: financeiro, serviços, industrial, artesanal, médico, etc...
Ao nivel de preços praticado todas as empresas, por mais pequenas que sejam, podem equipar-se e beneficiar das vantagens oferecidas por um computador profissional.
Graças às suas opçōes os PC 10/PC 20 podem evoluir, adaptando-se as necessidades das maiores empresas, nomeadamente multinacionais. Alguns dados técnicos:


## CARACTERÍSTICAS TÉCNICAS

## COMMODORE

PC 10/PC 20

## Unidade Central

- processador - 16 bits - 8088
- co-processador aritmético - 8087 (opcional)
- frequência - 4.77 MHz
- endereçagem RAM - 1 Mb


## Memória

- RAM - 256 Kb (standard)
- expansão RAM até 640 Kb
- ROM (BIOS) - 8 Kb
- MEV video - 32 Kb


## Interfaces

- paralelo (CENTRONICS) - incluido
- série (RS 232) - incluido
- video monocromático, $80 \mathrm{col} \times 25 \mathrm{li}$ nhas
- matriz $9 \times 14$, com possibilidades de caracteres alfanuméricos: intermitentes, invertidos, secretos, etc., etc. - incluido


## Portas de expansāo

- portas de I/O totalmente compativeis com IBM PC-5


## Diskettes

$-51 / 4^{\prime \prime} .360 \mathrm{~Kb} .(48 \mathrm{TPI})-2$ (para o PC 10) e 1 (para o PC 20)

- interface FD de alta velocidade formato IBM compatível - 1 (para o PC 10) e 1 (para o PC 20)


## Disco duro

- 10 Mb - 0 (para o PC 10) e 1 (para - PC 20)
- velocidade de transmissāo de dados
- $500 \mathrm{~Kb} / \mathrm{seg}$


## Teclado

- alfanúmérico, 85 teclas, 10 teclas de funçōes e teclado numérico em separado - incluído


## Monitor

- 12'' monocromático verde fósforo (CTR) $80 \mathrm{col} . \times 25$ linhas - incluído - RGB 12" (diversas alternativas) opcional



## Placa de gráficos

- compativel com placa monocromática da IBM (matriz $8 \times 14$ ) e placa cores/gráficos da IBM - opcional


## Formatos de écran

- monocromático/alfanumérico - $80 \times 25$ monocromático/gráfico - $640 \times 200$ pixels
monocromático/gráfico - $640 \times 352$ pixels
cores/alfanumérico-16 cores - $40 \times 25$
cores/alfanumérico-16 cores $-80 \times 25$
cores/gráfico- 16 cores - $160 \times 200$ pixels
cơres/gráfico-4 cores - $320 \times 200$ pixels
cores/grafico-16 cores $-320 \times 200$ pixels
cores/gráfico-4 cores - $640 \times 200$ pixels


## Sistema operativo

- MS/DOS - DOS 2.11


## Linguagem

- GW Basic - standard
- cobol, pascal, fortran, etc. - opcional


## Dimensōes

- CPU - $14,5 \times 49,0 \times 39,0 \mathrm{~cm}$ monitor - $27,7 \times 30,3 \times 29,3 \mathrm{~cm}$
teclado $-4,0 \times 49,0 \times 17,0 \mathrm{~cm}$


## MICRO PRODUTOS / NOVIDADES / MICRO

A Teledata também está a comercializar o APC 111, considerado o mais avançado computador pessoal. As performances do NEC APC 111 superam largamente as de um computador com sistema operativo MS/DOS standard. Com um processador quase duas vezes mais rápido e uma palavra de 16 bits (contra os 8 bits da maior parte dos computadores baseados no sistema MS/DOS), o software corre no APC 111 com uma velocidade 2 a 6 vezes maior que num PC MS/DOS standard. As portas de entrada/saida que - APC 111 possui, eliminam os problemas de configuraçāo. As teclas de funçāo programáticas dão-lhe 60 funçōes pré--programadas em qualquer tipo de sottware. O monitor permite uma fácil visão de qualquer ponto de observação, devido à sua ligeira inclinação e suporte giratório.

## A CAMPANHA <br> DE NATAL <br> DA COMPUTAR

A Computar conta a partir de agora com uma loja em Cascais, situada no Centro Comercial Visconde da Luz, junto à PSP. Coincidindo com a abertura deste estabelecimento, a Computar lançou, em Dezembro, uma campanha de preços especiais com prémios a distribuir todos os dias.
Eis algumas das vantagens dos computadores, segundo o aliciante desdobrável apresentado por esta empresa de consultores de informática: um prodigioso universo da informática ao alcance de toda a familia; pode usá-lo como instrumento de trabalho ou de estudo ou divertir-se com inúmeros e apaixonantes jogos: auxiliar os seus filhos nos trabalhos escolares; registar informação e dados necessários ao seu dia-a-dia; gerir empresas domésticas; conservar e actualizar inventários, estatisticas, listas de moradas e de aniversários, preparar relatórios ou efectuar cálculos matemáticos, etc.
A Computar pōe à disposição dos seus clientes equipas preparadas para os apoiar na sua integraçāo no mundo da informática com um serviço Expresso, criado a pensar nos que confiarem nas suas capacidades.

## BAUDE PRESENTE NA INFORPOR 85

A Buade-Informática Lda., importador exclusivo dos microcomputadores Dragon, irá estar presente na Inforpor 85, a realizar no Porto de 5 a 8 de Dezembro, apresentando um sistema de ensino por computador em rede. O sistema suportará software especifico para várias disciplinas constituindo assim forte motivo de interesse para professores e
técnicos de informática educacional.
O microcomputador Dragon em exibição utiliza sistemas operativos OS9 e Flex, o que faz deste económico computador uma útil ferramenta de trabalho devido à sua fácil exploração e boa performance: multitask, multiprogramaçāo, directórios múltiplos, etc. Desta forma é possivel, por exemplo, estar a enviar dados para uma impressora e simultaneamente introduzir outros, monitorizando--os, o que é assinalável num computador deste tipo.


(3) ELo CAMPaMMA DEÚLTIMA OPORTUNIDADE!! NATAL ATÉ 6 MENSALIDADES SEM PAGAR ENCARGOS
CONDICOEES EBPECIMIS PRRA CONJUNTOS PROFISEIONAIS


Timex 2048




AMSTRAD CPC 464 - Desde $9980 \$ 00$
AMSTRAD CPC 664 - Desde $15000 \$ 00$
ATARI 800 XL/130 XE - Oferta Joystick - $39800 \$ 00 / 4900 \$ 00$
Q.L. Timex - Desde $8800 \$ 00$

MONITOR TIMEX - Oferta ligação Spectrum (valor 3 500\$00) - $14900 \$ 00$
PRINTER TIMEX 2080 - Desde $7550 \$ 00$
AMSTRAD CPC 6128/PCW 8256 - $125000 \$ 00 / 198000 \$ 00$
FLOPPY-DISK TIMEX - Desde $7000 \$ 00$
SPECTRUM PLUS - $26900 \$ 00$

PEÇR AFORNHCOET E CRTHLOGOS COM PRECOS P. PRGAMENTO - ASSISTENCIA TÉCNICA ESPECIALIZADA EM 48 HORAS

- Demonstraçōes às $3 .{ }^{\text {as }}$ e 5 ."s-feiras, das 18 h às 20 h

[^1]
## IVROS / LIVROS / LIVROS LIVRDS

## GUIA AVANÇADO DO SPECTRUM

Autor: Mike James $\mathrm{N}^{\circ}$ de/e colecçao: $6 .^{\circ}$ vol. BIBLIOTECA VERBO DE INFORMATICA

## DADOS TECNICOS

N. ${ }^{\circ}$ de paginas: 218

Formato: $21 \times 14 \mathrm{~cm}$
Tipo de capa: brochada,
impressa a 4 cores
Preço de capa: 480\$00

## OBERVACOES

 SOBRE O AUTORMike James é o autor de diversas obras de grande sucesso sobre programação e tem sido um contribuidor regular da Electronic and Computing Monthly e de outras revistas de igual popularidade.

## OBSERVAÇOES <br> SOBRE A ObRA

Este livro é uma introdução prätica às caracteristicas mais avancadas do Spectrum, respeitantes tanto ao hardware como ao software.
Destina-se ao utilizador do Spectrum que procura uma compreensão mais profunda do aparelho e suas capacidades, começando por analisar o interior do microcomputador, ao que se seguern um guia do BASIC do ZX e uma introdução ao sistema de funcionamento da maquina.

O video do $Z X$ é estudado em detalhe e dedicam-se varios capitulos ao sistema de gravaçao, à interface RS 232. ao microdrive e às tecnicas de programação mais adiantadas. Fornecem-se ao longo do livro projectos e listagens de programas exaustivos. permitindo aos leitores a exploração das mais sofisticadas possibilidades Todos os programas deste livro foram verificados e testados pelo Gabinete Verbo de Informática.

MERCADO PROVÁVEL
Todos os possuidores do ZX
Spectrum, estudantes e interessados em ifrmatica.
interessados em informática.
PUBLICAÇÃO
Verbo


## IITFORMAX



## 

## SUMÁRIO

$$
\begin{aligned}
& \text { - VIDEO NOTÍCIAS ................. } 34 \\
& \text { - AUDIO ANÁLISE: } \\
& \text { COMPACT-DISC AKAI ........ } 36 \\
& \text { - AUDIO NOTICIAS ............. } 38 \\
& \text { - DOSSIER VIDEO } 8 \text { mm ...... } 40
\end{aligned}
$$



## MGM/UA E LORIMAR EDITADAS EM VIDEOCASSETES

## A Legal Video é uma nova empresa que a partir de agora

 editará regularmente videocassetes das produtores MGM/UA, Lorimar e PSO (outras virão).Associada da Video Mil de Espanha, a Legal Video promete mexer com o mercado legal das videocassetes no binómio qualidade de registo e de títulos. Algumas das grandes produçōes irāo estar brevernente ao dispor do
consumidor. Desde já, o Carteiro Toca Sempre Duas Vezes e Fuga para a Vitória (com Silvester Stallone) sāo algumas das sensaçōes.

## SONY LANÇA ORDENADOR DE IMAGEM

Um gerador de texto, um computador e um sintetizador de video, formam o conjunto SMC-70GP, ordenador de imagem e texto da Sony que lhe permite uma imensidade de efeitos especiais de imagem. Formatos de letra, cores diferentes, ampliação de imagem normal ou por contornos, gráficos, efeito de mosaico na imagem, sobreposiçōes, etc., etc., tornam este conjunto verdadeiramente sedutor para o videófilo amador ou semiprofissional
O equipamento utiliza software proprio em diskettes, com extensöes para outras possibilidades, tais como impressora. Uma das soluçōes em conexōes, permite ligar o sintetizador a uma câmara, um VCR e um monitor, mas, sāo possiveis pelo menos mais três variantes. Uma demonstraçào que recomendamos vivamente


NOVO
VIDEOGRAVADOR ITT
Tal como referimos na edição sobre a Lartecnica (MM, 14), a Standard Electrica apresentou um novo videogravador ITT, trata-se do VC-6100 (Betamax) que substitui o VC-6000 (por nos testado no numero de Maio), Trata-se de um VCR de menores dimensóes e peso, com mais baixo perfil e maiores
possibilidades, nomeadamente na pre-programação que passa de um único programa para 4 , mantendo, porem, o espaço da pré-programaçảo em 7 dias Conserva o slow motion, pause a imagem rápida, e acrescenta o ITR (gravaçaoinstantânea por fracçōes de tempo especificas), e o elecomando com 14 funçes. O VC-6100, possul ainda um preço verdadeiramente sensacional: 85 mil escudos.


## NOVOS MODELOS SIEMENS

A Siemens val apresentar dois novos modelos de gravadores video VHS. Trata-se do FM-391 e o FM-392, semelhantes no aspecto mas o segundo mais evoluido. Ambos têm som mono, e o 391 possui apenas uma pré-programação, porém, o 392 atinge os 4 programas em 18 dias e 32 sintonias. Ambos
são vendidos em versāo Pal/Secam (o que é excelente) com slow motion, imagem a imagem, pause e procura visual rápida. Dobragem de Audio (raro, sobretudo em bases de gama como estes) Backspacing e telecomando por infravermelhos, completam a apresentação com um preço verdadeiramente compelitivo: cem mil escudos para o 391, e cento e quinze mil escudos para - 392.

## TELEVISĀO DIGITAL PIONEER

A Pioneer tem ja comercializada no nosso pais uma televisao digital/plana, a SV-2801 Presente na Lartécnica, os leitores que la acorreram tiveram oportunidade de verificar a espectacular imagem desta TV de ecran de 70 cm plano e digital, sintoma da decada que vivemos. Som stereo, recepçao via satélite e cabo, 99 canais recepção de teletexto com 2 paginas memorizávels.
multistandard, e telecomando, sāo as possibilidades gerais do TV, que, no entanto, revela toda a sua espectacularidade na recepção de imagens
propriamente ditas. Ai, a definiçáo junta-se à suavidade da imagem que o digital proporciona, com o auxilio de um filtro à frente do écran Preço acima dos 100 mil escudos, mas seguramente merecedor



## video análise

## COMPACT-DISC AKAI CD-A7

## ELEGÂNCIA E ROBUSTEZ, A DIFÍCIL SIMBIOSE



PARA muitos o Compact-Disc ainda é falível, esses sāo sem dúvida os incrédulos que sustentam as teorias de que o que existe é bom e portanto suficiente. Que o digital é mania ou moda, que as coisas são como sāo, etc., etc. O mais grave é que esses são os que se dizem apaixonados do som, mas talvez à sua maneira, porque mudar de opiniāo é incoerência, enfim, o conservadorismo perigoso, mas felizmente inofensivo.

Na verdade, a História, seja ela dos grandes assuntos ou dos pequenos, en-carrega-se de accionar a sua própria inércia e, soberanamente, dizem-nos os livros que a evoluçāo acontece quase invariavelmente, para bem das sociedades.

Nāo se deve colocar, com certeza, o CD no capítulo dos temas fundamentais, no entanto, e no microcosmos dos que lutam pela perfeiçāo do som, ele é sem dúvida fundamental e cumpre escrupu-
losamente a mesma função que o disco preto quando substituiu a grafonola, nem mais nem menos, é a evoluçāo (necessária) das coisas no sentido do bem-estar, da fruição e do prazer, quem assim não entender faz mal.

Por tudo isto, o CD é a realidade. Venham as teorias detractoras que vierem, venham as insuficiências de Bits que vierem, qualquer audiçāo em CD é sempre espectacular, por isso, qualquer ouvinte
de discos pretos apenas o deixará de comprar por preconceito, falta de dinheiro ou desconhecimento.


Akai CD-D1, o primeiro da marca

## AKAI CD-A7

O Akai A7 inscreve-se assim na categoria daqueles leitores $C D$ que seduzem de imediato: primeiro - e sempre - pelo som cristalino e equilibrado que reproduz dos pequenos 12 cm platinados. Depois, por uma grande elegância e sobriedade, que se traduz em baixo perfil e descriçāo: todo preto (existe uma versão prateada, tipo linha videogravador Akai, mas, o negro, é bem bonito), um display colocado por debaixo da porta do disco visualiza por simbolos e palavras quase todas as instruções dadas ao aparelho.

Nāo menos elegante é o telecomando, com todas as funçōes possiveis de operar no próprio aparelho. Embora a sua utilização se torne cada vez mais tradicional o telecomando nảo será contudo tāo útil em Hi-Fi como num videogravador, sobretudo se os restantes elementos da cadeia (p.e. amplificador) nāo o tiverem. Mas, existindo, não é demais, pelo contrário.

Tradicionalmente, a Akai nāo é imediatamente acessivel ao utilizador, isso comprova-se também neste CD-A7, necessitando de um pequeno estudo do teclado e do livro de instruções, sobretudo se se quiser tirar partido de todas as funçōes da programação.

A programação, justamente, é excelente, possibilitando tudo: ouvir por ordem diversa as faixas de um disco; ouvir todas menos uma; ouvir a primeira, terceira e, depois, da quinta à décima. Estes sāo apenas alguns exemplos possiveis com o teclado numérico e ainda com quatro palavras (teclas): and, to, without e index. Algumas outras palavras, como program/start permitem-lhe avançar com tudo isto, depois, a tecla de repetição é
isso mesmo, a memória dá-lhe a possibilidade de conservar em audição uma determinada porção de disco repetindo--se caso necessário. Se se enganou, cancele tudo.
O display apresenta-lhe três modalidades (que se alteram premindo um único botão): número da faixa em audição e/ou programada/tempo de faixa em audição/tempo total do disco no momento. Quando introduz o disco o display dá--lhe a informação (comum também noutros $C D$ ) do número de faixas e tempo totais.
Comando de abrir/fechar porta de disco, power entrada de auscultadores (c/volume), pause/reset, led avisador de disco no interior, play e avanço rápido completam este excelente A7.

Um ou dois senão parece-nos no entanto dever sublinhar: o ruído de funcionamento do disco que passa um tanto em demasia para o exterior. Ausência de tecla de Stop e de Next, isto é, pas-
sagem imediata para a próxima música (ou faixa). Na verdade, isso é possivel: premindo em simultâneo a tecla play e avanço rápido (que se afigura algo complicado devido à posição vertical das teclas), ou entảo, recorrendo ao programador. De qualquer modo, com tāo boas possibilidades gerais, uma única tecla de next parece-nos que seria lógico e funcional. Finalmente, o avanço rápido nāo o é tanto assim e em discos de única faixa é demorado chegar ao fim. Outros CDs utilizam um sistema de avanço rápido progressivo, isto é, velocidade lenta no primeiro minuto de busca, que evolui para maior rapidez no segundo minuto e, finalmente, ganha grande velocidade a partir daí.

Evidentemente tudo isto não interfere na qualidade de som e, sendo pormenores necessários de referir, não penalizam porém o aparelho, até porque ele recupera noutros aspectos: um preço interessante, mesmo um dos mais baixos.

## FICHA «MINI MICRO'S»

| Número de canais | 2 |
| :---: | :---: |
| Frequência de resposta | 5 a 20000 Hz |
| Relação Sinal/Ruido | 90 dB |
| Separação de canais | 85 dB |
| Distorção harmónica total | 0,005\% |
| Conversāo digital/analógica | 16 bits |
| Dimensōes | $440 \times 76 \times 255 \mathrm{~mm}$ |
| Peso | $5,8 \mathrm{~kg}$ |
| Consumo | 24 W |
| Preço aproximado | 115 mil escudos |
| Distribuidor em Portugal | Galsom |

## GOSTÁMOS

- Som
- Apresentação/acabamentos e robustez
- Dimensōes
- Possibilidades de programação


## NÃO GOSTÁMOS

\author{

- Ausência de tecla de Next. <br> - Algum ruido exterior nó funcionamento
}


## TESTES ANTERIORES

[^2]
## HI-FI PIONEER <br> PARA LEVAR <br> NA MĀO!

A Pioneer lançou no nosso pais a Midı Série, equipamentos de reduzidas dimensōes que poderảo transportar-se de forma mais cómoda que os tradicionais. Pretende-se assim responder à concorrência de um tipo de mercado em franco crescimento.
O topo de gama é ocupado pelo S-770 que para além de
amplificador sintonizador, gira--discos. gravador de cassetes e colunas, tambem utiliza um leitor Compact-Disc (o mesmo sendo possivel para o S-550) O sistema S-330 possui, entre outros equipamentos, um gravador de cassetes duplo e. em conjunto com o S-770, utiliza a maior potência DIN: 50 Wats.
A base de gama é ocupada pelo S-110 com 32 Wats. Em opçảo, quer o conjunto S-330, quer o S-110, poderāo utilizar um Compact-Disc.


AKAI APRESENTA
LINHA
DE AUTO-RÁDIOS

A Akai continua a sua politica de expansảo no mercado português apresentando agora uma linha de auto-radios, de onde se destaca um auto--compact-disc, o 5900, que no essencial da tecnica mantem caracteristicas idēnticas ao seu congénere de salāo CD-A7, em apresentação aqui ao lado. Integrados na linha Alpine (inspirada no famoso automóvel). podem encontrar-se 3 modelos de auto-rádios/leitor de casseles, respectivamente, o 7273 L, topo de gama, e os 7243 e 7151 . O auto-CD, que
também possui rádio de AM/FM, oferece todas as caracteristicas do som digital distorçāo total de 0.005\%, sinal/ruido 90 dB e 5 a 20000 Hz na frequência de resposta. Nāo menos importante è a qualidade oferecida pelos auto--rádios clássicos, com 55 dB no S/R e distorção de 0,06\% para o 7273, e 0,1\% para os outros dois. Na frequência de resposta temos 30 a 18000 Hz para o 7273. e 40 a 12000 Hz para os outros. A potência situa-se, em $20+20 \mathrm{~W}$ para o primeiro e segundo e $6+6 \mathrm{~W}$ para o terceiro.
Completam a gama, um amplificador de poténcia, dois equalizadores (com 7 elementos de controlo de frequēncia) e 4 tipos de colunas.



As colunas Goodmans Mezzo

## VIDEOACUSTICA APRESENTA GOODMANS E DENON

A Goodmans, representada em Portugal pela Videoacústica, existe em Portugal através de um dos seus modelos mais interessantes, a "Mezzo", colunas de qualidade que proporcionam potências até 75 Wats (picos de 120) RMS Frequências entre os 45 e


O POA-1500


O Akai 7273L


# VIDEO 8 mm : A INCERTEZA OU O FUTURO? 

O Video 8 mm ai está, no mundo, em Portugal. Previsto no inicio da década, surge em 1985 provocando imediato correr de tinta nos meios especializados e, não menor confusāo no consumidor. Na verdade, a juntar ao VHS, BETA e VIDEO 2000, o potencial comprador tem agora a nova opçāo, o VIDEO 8 mm . Mais um para a panóplia? Para muitos ele è o formato da conciliação, para outros, precipita um lançamento que deveria ser mais conjunto. Para outros, ainda, surge como salvador de empresas de fotografia (filme super 8 mm ) em crise, e/ou anuncia - lançamento de novas vendas quando outras decrescem no formato BETA (com a viragem para o VHS).
0 que é, pois, o Video 8 mm ? Quais as perspectivas e capacidade? Este artigo e os ensaios ao Camcorder e VCR da Sony - que nos orgulhamos de efectuar em estreia nacional absoluta - dar-lhe-ão a resposta completa.

## O PROJECTO

Em 1982, na Matsushita, Japāo, reuniram--se cinco das principais casas de produção de material video: a própria Matsushita, a sua
associada JVC, a Philips, a Sony e a Hitachi. Desta reunião surgiu um acordo de principio que previa o desenvolvimento e comercialização entre os anos de 1985 e 1986 de um novo formato, compativel com todas as marcas: o Video 8 mm .
Dois anos depois, mais precisamente no primeiro trimestre de 1984, a Kodak distribui pelos jornais a informação de que se prepara para entrar no mercado do video com uma gama completa de software virgem (amador a profissional) e... com o Video 8 mm .
A Kodak, que se encontra em algumas dificuldades depois da quebra (em favor do video) do seu filme Super 8, entra directamente no campo da concorrência, utiliza a sua tecnologia e, em termos aparentes, parece ultrapassà-la.
Na verdade, o equipamento é fabricado pela TDK (fitas) e pela Matsushita (Camcorder e Videogravador), esta última, longe de se mostrar reticente quanto à cedência de tecnologia, opta, assim, por divulgar e aperfeiçoar o 8 mm através de terceiros, salvaguardando riscos de comercialização directa - este
"aperfeiçoamento" e verdadeiro: inicialmente, a Matsushita produziu para a Kodak uma "Consola" onde se introduzia o Camcorder para permitir a sua utilizaçảo em regime doméstico. A consola sintonizava ainda programas da TV, como um VCR normal. Porém, o modelo era volumoso e rapidamente ficou desactualizado quando a concorrência apresentou sintonizadores ou VCRs de 8 mm , independentes, tal como sucede nos formatos de 1/2 polegada. Aqui, a Kodak começou a atrasar o lançamento do seu produto - na verdade, o 8 mm era ja mais do que ter um simples Camcorder.
O ponto central da grande empresa de fotografia era a facilidade de penetraçáo nos mercados de grande consumo, onde abunda - médio consumidor que a Kodak tào bem conhece.
Todavia, e como se vera adiante, os grandes impórios do video tiveram a última palavra. Com efeito, as aparentes vantagens concedidas às empresas de fotografia no campo do 8 mm , nāo significaram mais que experiềncias de laboratório.


1. ${ }^{\circ}$ Video 8 mm da Kodak


Prototipo Betamovie (Sony) em 1980

## 1985: O INICIO

1985 chegou e, como já vaı sendo hábito, gera-se alguma confusão: do acordo celebrado na Matsushita tinha saído a intenção de se desenvolver a tecnologia do Video 8 mm , nomeadamente, na utilizaçāo de fita magnética de "Metal" e som-stereo-digital-PCM (ex-pandindo-se o digital à imagem - o que se estuda afanosamente).

De certa forma, a Sony, bem como outros fabricantes, cumpriram parte do acordo: as fitas sāo de "Metal" e o audio é gravado e reproduzido em stereo-FM (sendo, no caso da Sony - pelo menos nesse - digital-PCM; aliás, o VCR S700 daquela marca oferece mesmo outras possibilidades espectaculares em audio - mas, para mais pormenores sobre este assunto e sobre o PCM ver o ensaio adiante).

Porém, a fobia da concorrência levou muita gente a optar pelo desenvolvimento de projectos próprios, dentro dos formatos tradicionais, numa certa marginalizaçāo do 8 mm . Perdeu-se, assim, o sentido da tāo apregoada unidade.

De qualquer forma, as diferenças do V8 para os actuais formatos não são tantas como seria de desejar: como já se disse, o sinal audio é em FM-stereo, sendo digital PCM no caso da Sony. Todavia, em ambos os casos, também isso é já uma realidade nos VCRs $\mathrm{Hi}-\mathrm{Fi}$ dos formatos de $1 / 2$ polegada.

A utilização da fita de "Metal» (MP-Particulas de Metal de reduzida qualidade, e ME-- Metal Evaporado, de boa qualidade) é efectivamente o ponto mais inovador, mas igualmente necessário dado que o "Metal" permlte maior densidade de partículas magnéticas, o que é, nảo só importante, como imprescindivel para se obterem boas performances em tāo pequena porçāo de fita.

Todavia, existem certos contras, e um deles prende-se com a reduzida autonomia video ( 90 minutos na velocidade normal - SP - e cerca de 3 horas na velocidade longa LP). Registe-se ainda alguma abrasividade da fita.

Por outro lado, algumas marcas que se lançaram no 8 mm fizeram-no com tecnologias clássicas, como o caso da Canon, cujo Camcorder utiliza um tubo de imagem Newvicon. Os camcorders Pioneer, Sony e Sanyo recor-
rem já ao CCD (Charge Coupled Device uma espécie de fotodiodos de silicio). dispositivos de grande resolução e durabilidade que, mesmo assim, constituem tecnologia video para qualquer formato.

Finalmente, o próprio peso dos equipamentos V8 e semelhante ao dos camcorders da nova geração de 1/2 polegada (que veremos a seguir).

Para os críticos do V8, o que existe nāo è mais do que o principio do Video 8 mm do futuro, esse, sim, com imagem e som digitais. Esta novidade é de facto fundamental ao V8 na medida em que o digital (video) se encontra interdito aos formatos de 1/2 polegada devido à gravaçāo helicoidal. O V8, que poderá utilizar gravação longitudinal, em fitas de grande densidade, tem essa possibilidade. Nos formatos de $1 / 2$ polegada, a gravação longitudinal, e o respectivo comprimento de sinal, iriam ocupar um espaço impressionante.
total digitalizaçảo só deverá ocorrer na próxima meia dúzia de anos. Até lá, parece evidente que o eventual consumidor do V8 terá muitos ànos de plena utilização do seu material sem risco de se tornar obsoleto.


VHSmovie - cassete normal (Philips)

Betamovie 200 (Sony)

## O ESTADO DAS COISAS ANTES DO ATAQUE...

A reunião de 1982 nảo provocou, portanto, a unidade desejada, razāo pela qual cada um desenvolveu o seu próprio equipamento. JVC, Philips (que recentemente adaptou o VHS), Matsushita e Hitachi, entre outros, poderiam lançar o seu camcorder 8 mm , mas mantêm--se na expectativa.

Entretanto, surgem os camcorders em formato VHS e BETA: a Vhsmovie no formato VHS e do qual existem duas versōes, (a) cassete normal (ver MM n.ㅇ 12) e (b) minicassete (que se utiliza em VCRs normais mediante adaptador). O formato BETA possui a sua Betamovie com utilização de cassetes BETA normais.

Com o mercado abastecido nos formatos tradicionais, o 8 mm pode ter dificuldades de penetraçāo já que, todos os utilizadores dos equipamentos existentes terão de adquirir novas cassetes, camcorder e ainda o videogravador de uso doméstico.

De qualquer modo, algo se poderá modificar, justamente, quando a Sony decide co-
mercializar rapidamente 08 mm , e fá-lo, convenhamos, em grande força: 30 mil unidades/ /més que, só em França, são distribuidas em mais de 360 agentes.

Esta onda de choque parece ter provocado de imediato grandes motivaçōes nos fabricantes. A Sony anuncia, entretanto, mais de 120 adoptantes do novo formato, embora a maior parte, para já, não seja «visivel"

Os paises mais desenvolvidos no mercado de video vêem entāo fortes campanhas de promoção junto do potencial consumidor que ainda não possui qualquer equipamento, ou, pelo menos, câmara ou camcorder. Na Grā--Bretanha, (o segundo país do mundo com mais videos) Sony, Canon, Sanyo, etc., entram em força, o mesmo verificando-se nos EUA (3. ${ }^{\circ}$ ) e Japāo (primeira potência mundial), onde se junta a Pioneer (que penetra assim no video atraves do 8 mm ), entre outros.

Recorrem-se às estatísticas e sondagens; para as primeiras indica-se um rápido crescimento de vendas com, inclusive, ameaça ao VHS. Quanto às sondagens, a Mackintosh efectuou um estudo onde se prevé a possivel vitória do V8 a longo prazo.

Para os grandes impórios VHS prepara-se uma luta de médio prazo que passa já pelo
desenvolvimento de uma versão VHS HQ (High Quality - compativel com os actuais equipamentos mas mais evoluida), o mesmo sucedendo (e por estranho que pareça) no BETA, com o Super.

O volume financeiro deste sector do video (câmaras e afins) é sem dúvida o leit-motiv da disputa. Em 1985 movimentaram-se 1,75 mil milhōes de dólares e em 1995 as somas poderão atingir 3,7 milhōes, dos quais, dois terços serāo ocupados pelos camcorders.
Áconteça o que acontecer, o tempo é de expectativa e só uma coisa parece certa: algo do que o actual 8 mm oferece, existe já nos formatos clássicos (especialmente ao nivel dos VCRs), acrescido de evidentes vantagens de software e hardware. Contudo, para aqueles que ainda não possuem qualquer equipamento de video (e sảo muitos, aliás, a maior parte), jogará sem dúvida o efeito sedutor da imagem de um produto novo. Porém, é ainda no tempo e resposta massiva dos fabricantes de equipamentos e software que estará a palavra final, e um dos pontos vitais, repetimo-lo, constitui a vantagem e necessidade de dotar o V8 de linguagem digital, aí, decisivamente, suplantador dos sistemas existentes.


Protótipo V8, Hitachi (1981)

## CAMCORDER VIDEO 8 mm/TESTE

## SONY CCD-V8 IGUAL AOS OUTROS NO MELHOR!



A
INDA que a Sony anuncie a compatibilidade do novo sistema com o formato Beta (e bem assim com o VHS) atraves de conexoes em linha com os VCRs, a ver-
dade e que me parece impensável, para quem pretender optar pelo Video 8. fi-car-se ape is pelo Camcorder. Por outras palavra optar pelo novo formato implica gasi finheiro - tanto como

A CCD-v8 vem acompanhada de optimos extras. de entre os quais um carregador de bateria de multo facll uso que permite 3 carregamentos simultaneos
nómicas, tais como comprar o Camcorder e um Tuner (que praticamente todas as marcas adoptantes do formato vendem), porém, utilizar-se-á em excesso o mecanismo de gravaçāo/reprodução do camcorder com desgaste precoce do mesmo, tanto mais que o seu preço é, no mínimo, o dobro de um VCR de salāo. Depois, as funções do gravador apresentam ainda bastantes insuficiências, tais como, uma imagem em pause praticamente tapada pelas linhas de ruido.


De qualquer modo, ao ensaiarmos um aparelho deste tipo - o camcorder que vale mais como câmara, do que como videogravador - temos presente que o seu domínio fundamental é a imagem e a fidelidade de captação. Os acessórios, os extras, as possibilidades de reprodução, sảo, pelo menos e para já um pormenor de funcionalidade, e isto cum-pre-se em relação a todos os outros formatos e camcorders. No fundamental, portanto, este CCD-V8 corresponde à expectativa e apresenta-se como um equipamento soberbo, tāo bom como os meihores, tendo, enquanto câmara, a generalidade dos aspectos a seu favor.
Deixemos, pois, os pormenores técnicos do formato para o ensaio do videogravador, aqui ao lado, e fiquemos exclusivamente no binómio imagem/captaçāo.

## V8 CONTRA VHS

Se buscarmos um termo de comparação entre este camcorder V8 e um dos formatos existentes, teremos de recorrer ao VHS (por exemplo, a Vhsmovie Philips testada na MM, 12), ate porque as evoluçoes postas pelo V8 e sobretudo pela Sony nào encontram equivalente na algo limitada Betamovie (Beta).
Os dois Camcorders disputam entre si vantagens e desvantagens reciprocas e.
curiosamente, e na imagem que mais se aproximam, com vantagem para a CCD--V8, mas logo recuperada no registo de interiores com reduzida luz, onde os 10 lux da Vhsmovie Philips obtêm uma definição ligeiramente superior. Todavia, em exteriores e interiores iluminados a imagem captada pela Sony é mais precisa, com melhor fixaçāo de cores, e definição aliás, pensamos que a utilização dos fotodiodos de silício (CCD) em lugar do tubo de imagem clássico, será o principal responsável, melhorando a já referida definição de cor e contraste, retirando a cauda de cometa (que a Vhsmovie também nāo tem) e eliminando a distorção da geometria do plano. No restante, o equipamento óptico é idêntico (comparar fichas dos dois testes).

Acresce também vantagem para a CCD-V8, a utilização da total frequência de FM para o sinal video (até aqui utilizado pelos outros formatos, só no sinal
de Luminância). Aliás também o Audio se encontra dotado de FM (comum nos modelos $\mathrm{Hi}-\mathrm{Fi}$ de outros formatos) verdadeiramente entusiasmante e com uma captação de som excelente.

Porém para os dois camcorders veri-fica-se que o ruido do funcionamento do motor fica gravado.
A autonomia é sacrificada na CCD--V8, no entanto, 90 minutos em velocidade normal, ou 180 minutos em velocidade longa, parece-nos suficiente. Aliás, a adopção de duas velocidades de gravaçāo/reprodução no Video 8 mm (com evidente perda de qualidade na segunda, especialmente ao nivel do sinal/ruído de luminância, mantendo-se bom o S/R de crominância) pretende, justamente, compensar a, para já reduzida autonomia do novo formato. Daí que todos os equipamentos (camcorders e VCRs) possuam as velocidades SP e LP.


## DISPOSIÇÃO EQUILIBRADA DOS COMANDOS

O camcorder da Sony revela-se no geral muito elegante, bonito e racional no espaço utilizado. A bateria, que pesa apenas 300 gramas, fica no interior da pega. Do lado esquerdo do corpo, temos os comandos de câmara, com balanço de branco automático, luz natural e artificial; comutador para luz de trás, normal, e elevada; botão de power e botão de revisảo dos últimos segundos gravados. Na pega, do lado direito, encontra--se a tecla de zoom e o botāo de arranque de gravaçāo - que, na Vhsmovie Philips, sāo em número de dois, aumentando por isso as possibilidades. Já o visor electrónico pode ser destacável (impossivel na Vhsmovie) permitindo ser colocado até na māo...
A maior novidade no equipamento de gravaçāo (situado atrás), consiste na possibilidade de colocar planos intercalados (inserts). Isto deve-se à utilizaçāo de uma cabeça de apagamento incorporada no tambor (normalmente são fixas), deste modo, um sinal de video completo (um quadro = dois campos) é integralmente eliminado e, consequentemente, o sinal que está a seguir ao plano introduzido, permanece intocável. Este sistema permite pois o insert ou intercalado (o que no entanto também sucede em modelos de outros formatos). Se não fosse assim, veriamos as tradicionais «imagens rolantes», ou um espaço escuro caso o VCR possuísse um circuito silenciador que actua até termos uma imagem satisfatória para ver.

É pena que a CCD-V8 não tenha inserção de caracteres (data de gravaçōes, p.e.) ou conta-voltas visível no visor electrónico.

Em jeito de conclusāo, o camcorder CCD-V8 da Sony é evidentemente e desde já um equipamento a comprar, com montagens perfeitas entre sequências, com excelente imagem, com 6 opções possíveis para alimentaçāo - sendo a eléctrica a partir de uma bateria que pura e simplesmente se liga à corrente.

Como de costume, podemos ver as gravaçōes directamente no visor electrónico, no TV, ou através do VCR. As dimensōes e peso são excelentes e ainda que tenhamos testado um modelo sem autofocus, a Sony (e outras marcas) têm--no para entrega. A CCD-V8 é um modelo a comprar, e nāo é aqui que o Video 8 mm será criticado.

# FICHA «MINI MICRO's» 

Marca - Sony
Modelo - CCD-V8E
Fabricante - Sony
Formato - Video 8 mm
Sistema - Pal
Tempo máximo de gravaçĩo - Velocidade SP: 90 minutos com cassete P5-90 - Velocidade LP: 180 minutos (igual cassete) - Bateria: 1 hora

Telecomando - Sim (extra)
Número de cabeças video - 2 , rotativas, helicoidais em FM (2 cabeças audio, igualmente rotativas com sinal em FM)
Tempo de rebobinagem - 3 minutos (com cassete P5-90)
Fonte de alimentação - DC 6 V
Tubo de imagem - CCD (Charge Coupled Device)
Optica - Zoom 6X, auto/manual, F 1.4 ( $12-72 \mathrm{~mm}$ ), diâmetro da objectiva, 46 mm
Visor electrónico - 1 polegada
Iluminaçăo para gravação - 22 lux (minimo), 300 lux (recomandado)
Parámetros de temperatura - $0^{\circ}$ a $40^{\circ}$ Celsios
Entrada de micro - A partir do micro incorporado é possivel outro tipo, colocado no topo do camcorder
Entrada e saida de video/audio - Sim, tomada Euroconnector (21 pólos)
Indicadores no visor electrónico - Carga de bateria, balanço de branco, iluminação reduzida
Peso - 2 kg (sem bateria)
Dimensóes - $117 \times 193 \times 344 \mathrm{~mm}$
Preco - 280 mil escudos aproximados
Distribuidor em Portugal - Emilio Azevedo e Campos
Optica - Zoom 6X, auto/manual, F 1.4 (12-72 mm*), diâmetro da objectiva, 46 mm

* Para uma equivalência com as cámaras convencionais (fotografia, filme) multiplicar por 6, o que significa um obturador 6 vezes maior que em video



## VIDEOGRAVADOR $8 \mathrm{~mm} / T E S T E$

## SONY EV- A300EC

ASony não é, realmente, o Video 8 mm , como aliás se diz no artigo de fundo. A Sony foi apenas um dos impulsionadores do projecto, e a primeira marca que, por motivos comerciais, se viu obrigada a dar a cara ao novo standard. Por isso, o teste que agora se faz nāo significa conclusỏes idênticas para todos os equipamentos. Na verdade, o 8 mm existe, é uma realidade, mas quanto a qualidade, bem, quando retirei o videogravador da caixa tive a sensação de estar perante outro conceito de video... ainda que a qualidade possa estar somente neste equipamento Sony (e nāo em outros). Ainda que o Video 8 mm traga no seu interior duas cabeças rotativas, helicoidais e de azimute, ainda, em suma, que seja rigorosamente igual aos outros, excepto os pormenores...

## AS SEMELHANÇAS E AS DIFERENÇAS

O leitor que mais atentamente seguir
estes ensaios reparara de certo nas semelhanças deste A300 com o Sony F60, ensaiado o mês passado. Semelhanças que vāo desde o visual à própria qualidade da imagem.

Porém, o A300 possui muito menores dimensöes e a porta da cassete é do tipo gravador de audio. A estética é contudo igual e, rigorosamente igual e também o telecomando. Para o display, a Sony optou por uma nova cosmética de pormenor, mais agradável,, e pronto, eis o Video 8 mm , por fora.
Por dentro, o já referido sistema helicoidal, mas completado com som FM (idêntico aos VCRs de Hi-Fi de 1/2 polegada), ainda e também o mais importante: sinal video em FM. Na verdade, os formatos "clássicos" utilizam a modulação em FM para a luminância (preto e branco), agora, também a crominância (cor) deixa o AM para passar a FM. Finalmente, a fita é de metal (neste caso do teste, de particulas de metal - MP).

Se pensarmos em termos de som, o
reflexo e imediato: as cabeças de audio estāo incluidas no tambor de video, sendo por isso rotativas contrariamente aos outros sistemas (mono), em que estão fixas. Deste modo, para além da modulação FM, a maior velocidade de fita traduz melhor qualidade, para mais em suporte de metal, isto não obstante a velocidade de fita no Video 8 ser um pouco inferior aos sistemas de $1 / 2$ polegada. Em conclusāo, o som deste A300 é de uma pureza impecável, praticamente em sopro.

Quanto ao sinal de video: tantas vantagens relativamente aos formatos de $1 / 2$ polegada deveriam resultar significativamente, porém, limitamo-nos a comparar - A300 com o F60! Bom, para nós, o F60 possui, talvez, a melhor imagem que vimos ultimamente! Nāo obstante e se o A300 não ultrapassa muito o F60 isso deve-se à condicionante velocidade/suporte magnético. Com efeito, a velocidade de gravação é, como já se disse, um pouco menor, por outro lado, o espaço reservado ao sinal de video diminui, jus-

$\square \mathrm{Cl}$
tamente, devido as menores dimensoes da fita. A forma ideal de compensar tudo isto revelou-se na utilização do sinal em FM bem como da fita de metal de maior densidade (maior qualidade, mas tambem maior abrasividade... que só o tempo julgarà).
O fascinio do 8 mm vai no entanto mais longe e nomeadamente deste $A 300$ : a imagem ao alcance de uma cassete tipo audio, revelando a qualidade ao nivel dos melhores, é sedutor! Sedutor, ainda, porque é suficientemente novo para fazer valer a força do lançamento.
Neste momento, o 8 mm tem de ultrapassar a limitaçāo da autonomia ( 90 mi nutos em SP, ou 180 em LP). Porém, este A300 tem já muito a seu favor e quase me repito relativamente ao F60 ao analisar a sua essência técnica.
Precisāo de cor - variação minima.
Sinal/ruido de luminância - grāo escasso excepto na velocidade LP (minimo) e em variaçōes causadas pela fita - aliás, a fita que testámos juntamente com o videogravador apresentou por vezes ligeiras variaçōes de estabilidade ao centro e longitudinalmente. Defeito próprio ou de base, concretamente, seria necessário ver outras fitas, o que nāo foi possivel. Esperamos, porém, que o novo formato não revele deficiências devido ao suporte, seria um balde de água fria que o sistema nāo merece em absoluto.

Sinal/ruido de crominància - es-
tabilidade perfeita em directos, filmes, spots, etc
Contornos precisos e naturais, tridimensionalidade correcta.

## PROGRAMAÇĀO E FUNÇÕES DE IMAGEM

Tambem aqui estamos próximos do F60: 4 programas em três semanas permitirāo as melhores possibilidades.
As funçōes de imagem revelam inovaçōes, e é assim que à pause praticạmente perfeita (depois de acertada no botāo próprio) segue-se uma estupenda imagem a imagem gerada por tecla própria, ambos sem linhas de ruido e oscilaçōes. Francamente má é, no entanto, a imagem rápida em SP, mas normal em LP.
A sintonia é semielectrónica e facilima. Por outro lado, o A300 tem um controlo de contraste de imagem que atenua praticamente todos os tipos de gravação. O tracking é automático.

Referimos no teste do F60 a deficiente montagem, ou melhor, a sua impossibilidade. Neste A300 o backspacing ainda nāo está là, todavia, a pause funciona admiravelmente (especialmente no telecomando, onde possui botảo próprio - ao lado da imagem a imagem). Assim, as montagens tornam-se possiveis e também perfeitas.
Finalmente, o novissimo V8 quase efectua inserts. E isso deve-se à utilização,
tal como no Camcorder, de uma cabeça de apagamento instalada no tambor de video. A explicação está dada no outro teste por isso náo a repetimos. Ainda assim, o efeito neste caso não è tāo perfeito. De qualquer forma, após introdução da nova sequência, a que estava por baixo e eventualmente "sobrou", tem uma junçâo excelente sem "ruído" significativo, evitando-se igualmente as imagens rolantes, tambem ja referidas, e que constituem os «restos" do antigo sinal gravado.
O VCR super em 8 mm , Sony, é o S700 (que esperamos testar quando for comercializado legalmente - atenção a este pormenor). Nāo apenas tem fudo isto, como ainda som digital stereo PCM. No entanto, o A300 possui igualmente adaptador de interface para PCM.

Que conclusoes tirar? Para nós, este é o video, o sistema, e o videogravador para contar. De qualidade excepcional, oferece um preço não menos tentador (ver ficha). 08 mm tem, agora, todos os trunfos para vencer e para captar aqueles que ainda nāo possuem video. Tera de lutar contra a, para já, auséncia de software gravado, mas é um risco que talvez compense. O V8 (ou apenas 8) e uma bela realidade, por tudo isso, faz--nos crescer água na boca pensar no 8 de sinal video digital...

## Paulo Jorge Cruz



## FICHA

Marca - Sony «MINI MICRO's»
Modelo - EV-A300EC
Fabricante - Sony
Formato - Video 8 mm
Sistema - Pal
Programaçảo - Duraçāo - 21 dias
Programas - 4
Manutenção de programação em caso de corte
eléctrico - Sim, 3 minutos
Tempo máximo de gravação - 90 minutos (SP), 180 minutos (LP)
Tipo de carregamento des - Duas, SP e LP
Telecomando - Sim, infravermethos, Tipo gravador de audio, frontal
Sintonizador, número de canailios, 24 funções
Rebobinagem automática - Sim, 3 minemielectrónico
Funçoes de imagem - Imagem répidautos (com cassete P5-90)

Pause/still - Sim. Boa nite ruido normais
e sem linhas de ruido nitidez. Imagem estável
magem a magen
de ruido
Slow motion - Não
Entrada de câmara - Sim, ficha Euroconnec
Entrada de micro - Não
Entrada e saida de video
Entrada e saida de audio - Sim, ficha Euroconnector de 21 pólos-
Dobragem de audio - Não Sim, ficha Euroconnector de 21 pólos
Gravação instantántagem video - Sim, pause, resultado excelente

* Resposta sinal/ruido video - da autonomia
- Resposta sinal/ruido audio

Frequéncia de resposta audio
Filtro audio (dolbi) - Não
Número de cabecas video -
Dimensoies - $355 \times 80 \times 338,7 \mathrm{~mm}$, rotativas, helicoidais, em FM
Peso - $6,1 \mathrm{~kg}$
Consumo - 31 W
Preço - $150000 \$ 00$ (aproximadamente)

- Näo foi possivel estagal - Emilio Azevedo e Campos
dados.
Principal cassete utilizada no teste - Sony P5-30, particulas de metal(MP), fabricada no Japão


## CRITÉRIO «MINI MICRO's»

```
De a O-O
```

Apresentaçao
Acessibilidade e clareza de controlos
Relação preço-qualıdade
Funçoes de magem quaidade) SP
Qualidade de gravaçao reproduçao SP
Reproduçao sonora (em mono)
Geral

```
00*e0
-0-**
00000
000
000
0e00
-20*0
-**
-eee
-e*
```


## TESTES EFECTUADOS ANTERIORMENTE

| Marca | Modelo | Formato | N. ${ }^{\circ}$ 'MM' |
| :---: | :---: | :---: | :---: |
|  |  |  |  |
| PHILIPS | VR-6462 | VHS | 10 |
| ITT | VC-6000 | BETA | 11 |
| PHILIPS | VKR-6800 | VHS | 12 |
|  | (VHSMOVIE) |  |  |
| AKAI | VS-303 | VHS | 13 |
| SINGER | VH-3C | VHS | 13 |
| JVC | HH D150E | VHS | 14 |
| SONY | SL-F60EC | BETA | 14 |
|  |  |  |  |




ATARI é a outra dimensão em microcomputadores
A outra dimensão em capacidade - 64 K de memória RAM A outra dimensão no teclado - um verdadeiro teclado de computador profissional.
A outra dimensão em gráticos e som.
A outra dimensâoo em Software - Mais de 2000 programas à venda em todo o mundo.
Uma agradável dimensão no preço.
ATARI 800 XL - $33000 \$ 00$ Data Recorder - $9000 \$ 00$
Campanha especial ATARI 800 XL . Data Pecorder - 39800500
Uma representação com a confiança TRIUDUS
C Com. Alvalade - C Com Terminal - C. Com. Fonte Nova


[^0]:    836 690 690 521 539
    510 515 737
    1087 1087

    518 51 | 7 |
    | :--- |
    | 0 | 310 832 459 1203 518 1144 554 747 010 88. 747

    722 72
    72
    7 74
    131 131 57
    37
    143
    145
    0.07
    87

    $$
    \begin{aligned}
    & 7 \\
    & 43 \\
    & 15
    \end{aligned}
    $$

    $\qquad$

[^1]:    JOSÉ DE MELO \& SILVA, LDA.
    ESCRITORIO: Rua Bernardim Ribeiro, 15 LOJA ZODIACO: Rua Conde Redundo, 5-loja C LOJA MELO: Rua Gonçalves Crespo, 18-C (inaugurada em 1-10-85) Tel. Zodíaco: 549904 - Tel. Melo: 525689 - 1100 LISBOA

[^2]:    PHILIPS CD-204/«MM» N.0 13

